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 Preface 

 What This Book Is About 

 As I write these lines, a shiver is running down my back. Not that writing usually has 
that effect on me. But on this occasion, I am allowing myself a little moment of 
indulgence. As I am writing, I am also listening to one of my favorite pieces of music, 
the aria  “ Vorrei spiegarvi, oh dio! ”  composed by Mozart and masterfully performed 
by the soprano Kathleen Battle. A digital audio player sits in my pocket. It is smaller 
than a matchbox and outwardly serene; yet inside the little device is immensely busy, 
extracting 88,200 numerical values every second from computer fi les stored in its 
digital memory, which it converts into electrical currents. The currents, in turn, gener-
ate electric fi elds that incessantly push and tug ever so gently on a pair of delicate 
membranes in the ear buds of my in-ear headphones. And, voil à , there she is, 
Kathleen, hypnotizing me with her beautiful voice and dragging me through a brief 
but intense emotional journey that begins with a timid sadness, grows in intensity to 
plumb the depths of despair only to resolve into powerful and determined, almost 
uplifting defi ance. 

 But Kathleen is not alone. She brought a small orchestra with her, prominently 
featuring a number of string instruments and an oboe. They were all hidden in the 
immaterial stream of 88,200 numbers a second. Pour these numbers into a pair of ears, 
and together they make music. Their sounds overlap and weave together, yet my brain 
easily distinguishes the different instruments from each other and from Kathleen ’ s 
voice, hears some on the left, others on the right, and effortlessly follows the melodic 
line each plays. The violins sing, too, but not like Kathleen. Kathleen sings in Italian. 
My knowledge of Italian is not as good as I would like it to be, and when I fi rst heard 
this piece of music I spoke no Italian at all, but even on my fi rst hearing it was obvious 
to me, as it would be to anyone, that this was a song with words, even if I couldn ’ t 
understand the words. Now I am learning Italian, and each time I hear this song, I 
understand a little bit more. In other words, each time, this by now so familiar song 
is engaging new parts of my brain that were previously deaf to some small aspect of 
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it. The title of the song,  “ Vorrei spiegarvi, oh dio!, ”  by the way, means  “ I would like 
to explain to you, oh Lord! ”  It seems a curiously appropriate title for the purpose 
at hand. 

 Every time we listen, not just to music, but to anything at all, our auditory percep-
tion is the result of a long chain of diverse and fascinating processes and phenomena 
that unfold within the sound sources themselves, in the air that surrounds us, in our 
ears, and, most of all, in our brains. Clearly you are interested in these phenomena, 
otherwise you would not have picked up this book, and as you learn more about 
hearing, you will increasingly appreciate that the sense of hearing is truly miraculous. 
But it is an  “ everyday miracle, ”  one which, most of the time, despite its rich intricacy 
and staggering complexity, works so reliably that it is easily amenable to scientifi c 
inquiry. In fact, it is usually so reliable and effortless that we come to overlook what 
a stunning achievement it is for our ears and brains to be able to hear, and we risk 
taking auditory perception for granted, until it starts to go wrong. 

  “ Vorremo spiegarvi, caro lettore! ”  we would like to try and explain to you how it 
all works. Why do instruments and voices make sounds in the fi rst place, and why 
and in what ways do these sounds differ from one another? How is it possible that 
our ears can capture these sounds even though the vibrations of sound waves are often 
almost unimaginably tiny? How can the hundreds of thousands of nerve impulses 
traveling every second from your ears through your auditory nerves to your brain 
convey the nature of the incoming sounds? How does your brain conclude from these 
barrages of nerve impulses that the sounds make up a particular melody? How does 
it decide which sounds are words, and which are not, and what the words might 
mean? How does your brain manage to separate the singer ’ s voice from the many 
other sounds that may be present at the same time, such as those of the accompany-
ing instruments, and decide that one sound comes from the left, the other from the 
right, or that one sound contains speech, and the other does not? In the pages that 
follow, we try to answer these questions, insofar as the answers are known. 

 Thus, in this book we are trying to explain auditory perception in terms of the 
neural processes that take place in different parts of the auditory system. In doing so, 
we present selected highlights from a very long and large research project: It started 
more than 400 years ago and it may not be completed for another 400 years. As you 
will see, some of the questions we raised above can already be answered very clearly, 
while for others our answers are still tentative, with many important details unre-
solved. Neurophysiologists are not yet in a position to give a complete account of how 
the stream of numbers in the digital audio player is turned into the experience of 
music. Nevertheless, progress in this area is rapid, and many of the deep questions of 
auditory perception are being addressed today in terms of the responses of nerve cells 
and the brain circuits they make up. These are exciting times for auditory neuro-
scientists, and we hope that at least some of our readers will be inspired by this book 
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to join the auditory neuroscience community and help complete the picture that is 
currently emerging. We, the authors, are passionate about science: We believe that 
miracles become more miraculous, not less, if we try to lift the lid to understand their 
inner workings. Perhaps you will come to share our point of view. 

 How to Use This Book 

 People are interested in sound and hearing for many reasons, and they come to the 
subject from very diverse backgrounds. Because hearing results from the interplay of 
so many physical, biological, and psychological processes, a student of hearing needs 
at least a sprinkling of knowledge from many disciplines. A little physical acoustics, 
at least an intuitive and superfi cial understanding of certain mathematical ideas, such 
as Fourier spectra, and a fairly generous helping of neurophysiology and anatomy are 
absolute requirements. Furthermore, some knowledge of phonetics and linguistics or 
a little music theory are highly desirable extras. We have been teaching hearing for 
many years, and have always lamented that, although one can fi nd good books on 
acoustics, or on the mathematics of signal processing, the physiology of the ear, psy-
choacoustics, speech, or on music, so far no single book pulls all of these different 
aspects of hearing together into a single, integrated introductory text. We hope that 
this book will help fi ll this important gap. 

 We wrote this book with an advanced undergraduate readership in mind, aiming 
mostly at students in biological or medical sciences, audiology, psychology, neurosci-
ence, or speech science. We assumed that our readers may have little or no prior 
knowledge of physical acoustics, mathematics, linguistics, or speech science, and any 
relevant background from these fi elds will therefore be explained as we go along. 
However, this is fi rst and foremost a book about brain function, and we have assumed 
that our readers will be familiar with some basic concepts of neurophysiology and 
neuroanatomy, perhaps because they have taken a fi rst-year university course on the 
subject. If you are uncertain about what action potentials, synapses, and dendrites are, 
or where in your head you might reasonably expect to fi nd the cerebral cortex or the 
thalamus, then you should read a concise introductory neuroscience text before 
reading this book. At the very least, you might want to look through a copy of  “ Brain 
Facts, ”  a very concise and highly accessible neuroscience primer available free of 
charge on the Web site of the Society for Neuroscience (www.sfn.org). 

 The book is divided into eight chapters. The fi rst two provide essential background 
on physical acoustics and the physiology of the ear. In the chapters that follow, we 
have consciously avoided trying to  “ work our way up the ascending auditory pathway ”  
structure by structure. Instead, in chapters 3 to 6, we explore the neurobiology behind 
four aspects of hearing — namely, the perception of pitch, the processing of speech, 
the localization of sound sources, and the perceptual separation of sound mixtures. 



x Preface

The fi nal two chapters delve into the development and plasticity of the auditory 
system, and briefl y discuss contemporary technologies aimed at treating hearing loss, 
such as hearing aids and cochlear implants. 

 The book is designed as an entirely self-contained text, and could be used either 
for self-study or as the basis of a short course, with each chapter providing enough 
material for approximately two lectures. An accompanying Web site with additional 
materials can be found at www.auditoryneuroscience.com. These supplementary 
materials include sound samples and demonstrations, animations and movie clips, 
color versions of some of our illustrations, a discussion forum, links, and other materi-
als, which students and instructors in auditory neuroscience may fi nd instructive, 
entertaining, or both. 



 1   Why Things Sound the Way They Do 

 We are very fortunate to have ears. Our auditory system provides us with an incredibly 
rich and nuanced source of information about the world around us. Listening is not 
just a very useful, but also often a very enjoyable activity. If your ears, and your audi-
tory brain, work as they should, you will be able to distinguish thousands of sounds 
effortlessly — running water, slamming doors, howling wind, falling rain, bouncing 
balls, rustling paper, breaking glass, or footsteps (in fact, countless different types of 
footsteps: the crunching of leather soles on gravel, the tic-toc-tic of stiletto heels on 
a marble fl oor, the cheerful splashing of a toddler stomping through a puddle, or the 
rhythmic drumming of galloping horses or marching armies). The modern world 
brings modern sounds. You probably have a pretty good idea of what the engine of 
your car sounds like. You may even have a rather different idea of what the engine 
of your car  ought to  sound like, and be concerned about that difference. Sound and 
hearing are also enormously important to us because of the pivotal role they play in 
human communication. You have probably never thought about it this way, but every 
time you talk to someone, you are effectively engaging in something that can only 
be described as a telepathic activity, as you are effectively  “ beaming your thoughts 
into the other person ’ s head, ”  using as your medium a form of  “ invisible vibrations. ”  
Hearing, in other words, is the telepathic sense that we take for granted (until we lose 
it) and the sounds in our environment are highly informative, very rich, and not rarely 
enjoyable. 

 If you have read other introductory texts on hearing, they will probably have told 
you, most likely right at the outset, that  “ sound is a pressure wave, which propagates 
through the air. ”  That is, of course, entirely correct, but it is also somewhat missing 
the point. Imagine you hear, for example, the din of a drawer full of cutlery crashing 
down onto the kitchen fl oor. In that situation, lots of minuscule ripples of air pressure 
will be radiating out from a number of mechanically excited metal objects, and will 
spread outwards in concentric spheres at the speed of sound, a breathless 340 m/s 
(about 1,224 km/h or 760 mph), only to bounce back from the kitchen walls and 
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ceiling, fi lling, within only a few milliseconds, all the air in the kitchen with a complex 
pattern of tiny, ever changing ripples of air pressure. Fascinating as it may be to try 
to visualize all these wave patterns, these sound waves certainly do not describe what 
we  “ hear ”  in the subjective sense. 

 The mental image your sense of hearing creates will not be one of delicate pressure 
ripples dancing through the air, but rather the somewhat more alarming one of several 
pounds of sharp knives and forks, which have apparently just made violent and unex-
pected contact with the kitchen fl oor tiles. Long before your mind has had a chance 
to ponder any of this, your auditory system will already have analyzed the sound 
pressure wave pattern to extract the following useful pieces of information: that the 
fallen objects are indeed made of metal, not wood or plastic; that there is quite a large 
number of them, certainly more than one or two; that the fallen metal objects do not 
weigh more than a hundred grams or so each (i.e., the rampaging klutz in our kitchen 
has indeed spilled the cutlery drawer, not knocked over the cast iron casserole dish); 
as well as that their impact occurred in our kitchen, not more than 10 meters away, 
slightly to the left, and not in the kitchen of our next door neighbors or in a fl at 
overhead. 

 That our auditory brains can extract so much information effortlessly from just a 
few  “ pressure waves ”  is really quite remarkable. In fact, it is more than remarkable, it 
is astonishing. To appreciate the wonder of this, let us do a little thought experiment 
and imagine that the klutz in our kitchen is in fact a  “ compulsive serial klutz, ”  and 
he spills the cutlery drawer not once, but a hundred times, or a thousand. Each time 
our auditory system would immediately recognize the resulting cacophony of sound: 
 “ Here goes the cutlery drawer again. ”  But if you were to record the sounds each time 
with a microphone and then look at them on an oscilloscope or computer screen, you 
would notice that the sound waves would actually look quite different on each and 
every occasion. 

 There are infi nitely many different sound waves that are all recognizable as the 
sound of cutlery bouncing on the kitchen fl oor, and we can recognize them even 
though we hear each particular cutlery-on-the-fl oor sound only once in our lives. 
Furthermore, our prior experience of hearing cutlery crashing to the fl oor is likely to 
be quite limited (cutlery obsessed serial klutzes are, thankfully, a very rare breed). But 
even so, most of us have no diffi culty imagining what cutlery crashing to fl oor would 
sound like. We can even imagine how different the sound would be depending 
on whether the fl oor was made of wood, or covered in linoleum, or carpet, or 
ceramic tiles. 

 This little thought experiment illustrates an important point that is often over-
looked in introductory texts on hearing. Sound and hearing are so useful because 
 things make sounds, and different things make different sounds.  Sound waves carry valu-
able clues about the physical properties of the objects or events that created them, 
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and when we listen we do not seek to sense vibrating air for the sake of it, but rather 
we hope to learn something about the sound  sources , that is, the objects and events 
surrounding us. For a proper understanding of hearing, we should therefore start off 
by learning at least a little bit about how sound waves are created in the fi rst place, 
and how the physical properties of sound sources shape the sounds they make. 

 1.1   Simple Harmonic Motion — Or, Why Bells Go  “ Bing ”  When You Strike Them 

 Real-world sounds, like those we just described, are immensely rich and complex. But 
in sharp contrast to these  “ natural ”  sounds, the sounds most commonly used in the 
laboratory to study hearing are by and large staggeringly dull. The most common 
laboratory sound by far is the sine wave pure tone, a sound that most nonscientists 
would describe, entirely accurately, as a  “ beep ”  — but not just any beep, and most 
certainly not an interesting one. To be a  “ pure ”  tone, the beep must be shorn of any 
 “ contaminating ”  feature, be completely steady in its amplitude, contain no  “ ampli-
tude or frequency modulations ”  (properties known as  vibrato  to the music lover) nor 
any harmonics (overtones) or other embellishing features. A pure tone is, indeed, so 
bare as to be almost  “ unnatural ” : pure tones are hardly ever found in everyday sound-
scapes, be they manmade or natural. 

 You may fi nd this puzzling. If pure tones are really quite boring and very rare in 
nature (and they are undeniably both), and if hearing is about perceiving the real 
world, then why are pure tones so widely used in auditory research? Why would 
anyone think it a good idea to test the auditory system mostly with sounds that are 
neither common nor interesting? There are, as it turns out, a number of reasons for 
this, some good ones (or at least they seemed good at the time) and some decidedly 
less good ones. And clarifying the relationship between sinusoidal pure tones and 
 “ real ”  sounds is in fact a useful, perhaps an essential, fi rst step toward achieving a 
proper understanding of the science of hearing. To take this step we will need, at 
times, a mere smidgen of mathematics. Not that we will expect you, dear reader, to 
do any math yourself, but we will encourage you to bluff your way along, and in doing 
so we hope you will gain an intuitive understanding of some key concepts and tech-
niques. Bluffi ng one ’ s way through a little math is, in fact, a very useful skill to cul-
tivate for any sincere student of hearing. Just pretend that you kind of know this and 
that you only need a little  “ reminding ”  of the key points. With that in mind, let us 
confi dently remind ourselves of a useful piece of applied mathematics that goes by 
the pleasingly simple and harmonious name of  simple harmonic motion . To develop an 
intuition for this, let us begin with a simple, stylized object, a mass-spring system, 
which consists of a lump of some material (any material you like, as long as it ’ s not 
weightless and is reasonably solid) suspended from an elastic spring, as shown in   fi gure 
1.1 . (See the book ’ s Web site for an animated version of this fi gure.)    
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 Let us also imagine that this little suspended mass has recently been pushed, so 
that it now travels in a downward direction. Let us call this the  x  direction. Now is 
an excellent time to start pretending that we were once quite good at school math 
and physics, and, suitably reminded, we now recall that masses on the move are inert, 
that is, they have a tendency to keep on moving in the same direction at the same 
speed until something forces them to slow down or speed up or change direction. The 
force required to do that is given by Newton ’ s second law of motion, which states 
that force equals mass times acceleration, or  F = m  ·  a . 

 Acceleration, we further recall, is the rate of change of velocity ( a = dv/dt ) and 
velocity is the rate of change of position ( v = dx/dt ). So we can apply Newton ’ s second 
law to our little mass as follows: It will continue to travel with constant velocity 
 dx/dt  in the  x  direction until it experiences a force that changes its velocity; the rate 
of change in velocity is given by  F = m  ·  d  2  x/dt   2 . (By the way, if this is getting a bit 
heavy going, you may skip ahead to the paragraph beginning  “ In other words … . ”  We 
won ’ t tell anyone you skipped ahead, but note that bluffi ng your way in math takes 
a little practice, so persist if you can.) Now, as the mass travels in the  x  direction, it 
will soon start to stretch the spring, and the spring will start to pull against this 
stretch with a force given by Hooke ’ s law, which states the pull of the spring is pro-
portional to how far it is stretched, and it acts in the opposite direction of the stretch 

 Figure 1.1 
 A mass-spring system. 

F = −k ∙ x

F = m ∙ d2x/dt2
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(i.e.,  F =  – k  ·  x,  where  k  is the spring constant, a proportionality factor that is large 
for strong, stiff springs and small for soft, bendy ones; the minus sign reminds us that 
the force is in a direction that opposes further stretching). 

 So now we see that, as the mass moves inertly in the  x  direction, there soon arises 
a little tug of war, where the spring will start to pull against the mass ’  inertia to slow 
it down. The elastic force of the spring and the inertial force of the mass are then, in 
accordance with Newton ’ s third law of motion, equal in strength and opposite in 
direction, that is,  –  k  ·  x = m  ·  d   2  x/dt   2 . We can rearrange this equation using elementary 
algebra to  d   2  x/dt   2  =  –  k/m  ·  x  to obtain something that many students of psychology 
or biology would rather avoid, as it goes by the intimidating name of  second-order dif-
ferential equation . But we shall not be so easily intimidated. Just note that this equation 
only expresses, in mathematical hieroglyphics, something every child playing with a 
slingshot quickly appreciates intuitively, namely, that the harder one pulls the mass 
in the slingshot against the elastic, the harder the elastic will try to accelerate the mass 
in the opposite direction. If that rings true, then deciphering the hieroglyphs is not 
diffi cult. The acceleration  d   2  x/dt   2  is large if the slingshot has been stretched a long 
way (  – x  is large), if the slingshot elastic is stiff ( k  is large), and if the mass that needs 
accelerating is small (again, no surprise: You may remember from childhood that large 
masses, like your neighbor ’ s garden gnomes, are harder to catapult at speed than 
smaller masses, like little pebbles). 

 But what does all of this have to do with sound? This will become clear when we 
quickly  “ remind ”  ourselves how one solves the differential equation  d   2  x/dt   2   =  – k/m ·  x.  
Basically, here ’ s how mathematicians do this: they look up the solution in a book, or 
get a computer program for symbolic calculation to look it up for them, or, if they are 
very experienced, they make an intelligent guess and then check if it ’ s true. Clearly, the 
solution must be a function that is proportional to minus its own second derivative 
(i.e.,  “ the rate of change of the rate of change ”  of the function must be proportional to 
minus its value at each point). It just so happens that sine and cosine functions, pretty 
much uniquely, possess this property. Look at the graph of the cosine function that we 
have drawn for you in   fi gure 1.2 , and note that, at zero, the cosine has a value of 1, but 
is fl at because it has reached its peak, and has therefore a slope of 0. Note also that the 
 – sine function, which is also plotted in gray, has a value of 0 at zero, so here the 
slope of the cosine happens to be equal to the value of  – sine. This is no coincidence. 
The same is also true for cos( π /2), which happens to have a value of 0 but is falling 
steeply with a slope of  – 1, while the value of  – sin( π /2) is also  – 1. It is, in fact, true 
everywhere. The slope of the cosine is minus the sine, and the slope of minus sine is 
minus the cosine. Sine waves, uniquely, describe the behavior of mass-spring systems, 
because they are everywhere proportional to minus their own second derivative 
[ d   2  cos( t ) /dt   2   =  –  cos( t )] and they therefore satisfy the differential equation that describes 
the forces in a mass-spring system.   
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 Figure 1.2 
 The cosine and its derivatives. 
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 In other words, and this is the important bit,  the natural behavior for any mass-spring 
system is to vibrate in a sinusoidal fashion . And given that many objects, including (to 
get back to our earlier example) items of cutlery, have both mass and a certain amount 
of springiness, it is perfectly natural for them, or parts of them, to enter into  “ simple 
harmonic motion, ”  that is, to vibrate sinusoidally. Guitar or piano strings, bicycle 
bells, tuning forks, or xylophone bars are further familiar examples of everyday mass-
spring systems with obvious relevance to sound and hearing. You may object that 
sinusoidal vibration can ’ t really be the  “ natural way to behave ”  for all mass-spring 
systems, because, most of the time, things like your forks and knives do not vibrate, 
but sit motionless and quiet in their drawer, to which we would reply that a sinusoidal 
vibration of zero amplitude is a perfectly fi ne solution to our differential equation, 
and no motion at all still qualifi es as a valid and natural form of simple harmonic 
motion. 

 So the natural behavior (the  “ solution ” ) of a mass-spring system is a sinusoidal 
vibration, and written out in full, the solution is given by the formula  x ( t )  = x  0    ·  
cos ( t  ·    √ ( k/m )  +  ϕ   0 ), where  x  0  is the  “ initial amplitude ”  (i.e., how far the little mass had 
been pushed downward at the beginning of this little thought experiment), and   ϕ   0  is 
its  “ initial phase ”  (i.e., where it was in the cycle at time zero). If you remember how 
to differentiate functions like this, you can quickly confi rm that this solution indeed 
satisfi es our original differential equation. Alternatively, you can take our word for it. 
But we would not be showing you this equation, or have asked you to work so hard 
to get to it, if there weren ’ t still quite a few very worthwhile insights to gain from it. 
Consider the  cos ( t  ·   √  ( k/m )) part. You may remember that the cosine function goes 
through one full cycle over an angle of 360 o , or 2  π   radians. So the mass-spring system 
has swung through one full cycle when  t  ·   √  ( k/m ) equals 2  π  . It follows that the period 
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(i.e., the time taken for one cycle of vibration) is  T =  2  π / √  ( k/m ). And you may recall 
that the frequency (i.e., the number of cycles per unit time) is equal to 1 over the 
period, so  f =  √  ( k/m ) /  2  π  . 

 Translated into plain English, this tells us that our mass-spring system has a pre-
ferred or natural frequency at which it wants to oscillate or vibrate. This is known as 
the system ’ s resonance (or resonant) frequency, and it is inversely proportional to the 
square root of its mass and proportional to the square root of its stiffness. If this fre-
quency lies within the human audible frequency range (about 20 – 20,000 cycles/s, or 
Hz), then we may hear these vibrations as sound. Although you may, so far, have been 
unaware of the underlying physics, you have probably exploited these facts intuitively 
on many occasions. So when, to return to our earlier example, the sounds coming 
from our kitchen tell us that a box full of cutlery is currently bouncing on the kitchen 
fl oor, we know that it is the cutlery and not the saucepans because the saucepans, 
being much heavier, would be playing much lower notes. And when we increase the 
tension on a string while tuning a guitar, we are, in a manner of speaking, increasing 
its  “ stiffness, ”  the springlike force with which the string resists being pushed sideways. 
And by increasing this tension, we increase the string ’ s resonance frequency. 

 Hopefully, this makes intuitive sense to you. Many objects in the world around us 
are or contain mass-spring systems of some type, and their resonant frequencies tell 
us something about the objects ’  physical properties. We mentioned guitar strings and 
metallic objects, but another important, and perhaps less obvious example, is the reso-
nant cavity. Everyday examples of resonant cavities might include empty (or rather 
air-fi lled) bottles or tubes, or organ pipes. You may know from experience that when 
you very rapidly pull a cork out of a bottle, it tends to make a  “ plop ”  sound, and you 
may also have noticed that the pitch of that sound depends on how full the bottle is. 
If the bottle is almost empty (of liquid, and therefore contains quite a lot of air), then 
the plop is much deeper than when the bottle is still quite full, and therefore contains 
very little air. You may also have amused yourself as a kid by blowing over the top of 
a bottle to make the bottle  “ whistle ”  (or you may have tried to play a pan fl ute, which 
is much the same thing), and noticed that the larger the air-fi lled volume of the bottle, 
the lower the sound. 

 Resonant cavities like this are just another version of mass-spring systems, only 
here both the mass and the spring are made of air. The air sitting in the neck of the 
bottle provides the mass, and the air in the belly of the bottle provides the  “ spring. ”  
As you pull out the cork, you pull the air in the neck just below the cork out with it. 
This decreases the air pressure in the belly of the bottle, and the reduced pressure 
provides a spring force that tries to suck the air back in. In this case, the mass of the 
air in the bottle neck and the spring force created by the change in air pressure in the 
bottle interior are both very small, but that does not matter. As long as they are bal-
anced to give a resonant frequency in the audible range, we can still produce a clearly 
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audible sound. How large the masses and spring forces of a resonator are depends 
a lot on its geometry, and the details can become very complex; but in the simplest 
case, the resonant frequency of a cavity is inversely proportional to the square 
root of its volume, which is why small organ pipes or drums play higher notes than 
large ones. 

 Again, these are facts that many people exploit intuitively, even if they are usually 
unaware of the underlying physics. Thus, we might knock on an object made of wood 
or metal to test whether it is solid or hollow, listening for telltale low resonant fre-
quencies that would betray a large air-fi lled resonant cavity inside the object. Thus, 
the resonant frequencies of objects give us valuable clues to the physical properties, 
such as their size, mass, stiffness, and volume. Consequently, it makes sense to assume 
that a  “ frequency analysis ”  is a sensible thing for an auditory system to perform. 

 We hope that you found it insightful to consider mass-spring systems, and  “ solve ”  
them to derive their resonant frequency. But this can also be misleading. You may 
recall that we told you at the beginning of this chapter that pure sine wave sounds 
hardly ever occur in nature. Yet we also said that mass-spring systems, which are plenti-
ful in nature, should behave according to the equation  x ( t )  = x  0    ·   cos( t   ·    √ (k/ m )   +    ϕ  0  ); 
in other words, they should vibrate sinusoidally at their single preferred resonance 
frequency,  f =  √ (k/  m )/2 π , essentially forever after they have been knocked or pushed 
or otherwise mechanically excited. If this is indeed the case, then pure tone – emitting 
objects should be everywhere. Yet they are not. Why not? 

 1.2   Modes of Vibration and Damping — Or Why a  “ Bing ”  Is Not a Pure Tone 

 When you pluck a string on a guitar, that string can be understood as a mass-spring 
system. It certainly isn ’ t weightless, and it is under tension, which gives it a springlike 
stiffness. When you let go of it, it will vibrate at its resonant frequency, as we would 
expect, but that is not the only thing it does. To see why, ask yourself this: How can 
you be sure that your guitar string is indeed just one continuous string, rather than 
two half strings, each half as long as the original one, but seamlessly joined. You may 
think that this is a silly question, something dreamt up by a Zen master to tease 
a student. After all, each whole can be thought of as made of two halves, and if the 
two halves are joined seamlessly, then the two halves make a whole, so how could 
this possibly matter? Well, it matters because each of these half-strings weighs half 
as much and is twice as stiff as the whole string, and therefore each half-string will 
have a resonance frequency that is twice as high as that of the whole string. 

 When you pluck your guitar string, you make it vibrate and play its note, and the 
string must decide whether it is to vibrate as one whole or as two halves; if it chooses 
the latter option, the frequency at which it vibrates, and the sound frequency it emits, 
will double! And the problem doesn ’ t end there. If we can think of a string as two 
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half-strings, then we can just as easily think of it as three thirds, or four quarters, and 
so forth. How does the string decide whether to vibrate as one single whole or to 
exhibit this sort of  “ split personality, ”  and vibrate as a collection of its parts? Well, it 
doesn ’ t. When faced with multiple possibilities, strings will frequently go for them 
all, all at the same time, vibrating simultaneously as a single mass-spring system, as 
well as two half mass systems, and as three thirds, and as four quarters, and so on. 
This behavior is known as  “ modes of vibration ”  of the string, and it is illustrated 
schematically in   fi gure 1.3 , as well as in an animation that can be found on the book ’ s 
Web site.    

 Due to these modes, a plucked guitar string will emit not simply a pure tone cor-
responding to the resonant frequency of the whole string, but a mixture that also 
contains overtones of twice, three, four, or  n  times that resonant frequency. It will, in 
other words, emit a complex tone —  “ complex ”  not in the sense that it is complicated, 
but that it is made up of a number of frequency components, a mixture of harmoni-
cally related tones that are layered on top of each other. The lowest frequency com-
ponent, the resonant frequency of the string as a whole, is known as the fundamental 
frequency, whereas the frequency components corresponding to the resonance of the 
half, third, fourth strings (the second, third, and fourth modes of vibration) are called 
the  “ higher harmonics. ”  The nomenclature of harmonics is a little confusing, in that 
some authors will refer to the fundamental frequency as the  “ zeroth harmonic, ”  or 
F 0 , and the fi rst harmonic would therefore equal twice the fundamental frequency, 
the second harmonic would be three times  F  0 , and the  n th harmonic would be  n  + 1 
times  F  0 . Other authors number harmonics differently, and consider the fundamental 

 Figure 1.3 
 (A) The fi rst four modes of vibration of a string. (B) A rectangular plate vibrating in the fourth 

mode along its length and in the third mode along its width. 
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to be also the fi rst harmonic, so that the  n th harmonic has a frequency of  n  times F 0 . 
We shall adhere to the second of these conventions, not because it is more sensible, 
but because it seems a little more commonly used. 

 Although many physical objects such as the strings on an instrument, bells, or 
xylophone bars typically emit complex tones made up of many harmonics, these 
harmonics are not necessarily present in equal amounts. How strongly a particular 
harmonic is represented in the mix of a complex tone depends on several factors. One 
of these factors is the so-called initial condition. In the case of a guitar string, the 
initial condition refers to how, and where, the string is plucked. If you pull a guitar 
string exactly in the middle before you let it go, the fundamental fi rst mode of vibra-
tion is strongly excited, because we have delivered a large initial defl ection just at the 
fi rst mode ’ s  “ belly. ”  However, vibrations in the second mode vibrate around the 
center. The center of the string is said to be a node in this mode of vibration, and 
vibrations on either side of the node are  “ out of phase ”  (in opposite direction); that 
is, as the left side swings down the right side swings up. 

 To excite the second mode we need to defl ect the string asymmetrically relative to 
the midpoint. The initial condition of plucking the string exactly in the middle does 
not meet this requirement, as either side of the midpoint is pulled and then released 
in synchrony, so the second mode will not be excited. The fourth and sixth modes, 
or any other even modes will not be excited either, for the same reason. In fact, pluck-
ing the string exactly in the middle excites only the odd modes of vibration, and it 
excites the fi rst mode more strongly than progressively higher odd modes. Conse-
quently, a guitar string plucked in the middle will emit a sound with lots of energy 
at the fundamental, decreasing amounts of energy at the third, fi fth, seventh  …  har-
monics, and no energy at all at the second, fourth, sixth …  harmonics. If, however, a 
guitar string is plucked somewhere near one of the ends, then even modes may be 
excited, and higher harmonics become more pronounced relative to the fundamental. 
In this way, a skilled guitarist can change the timbre of the sound and make it sound 
 “ brighter ”  or  “ sharper. ”  

 Another factor affecting the modes of vibration of an object is its geometry. The 
geometry of a string is very straightforward; strings are, for all intents and purposes, 
one-dimensional. But many objects that emit sounds can have quite complex two- and 
three-dimensional shapes. Let us briefl y consider a rectangular metal plate, which is 
struck. In principle, a plate can vibrate widthwise just as easily as it can vibrate along 
its length. It could, for example, vibrate in the third mode along its width and in the 
fourth mode along its length, as is schematically illustrated in   fi gure 1.3B . Also, in a 
metal plate, the stiffness stems not from an externally supplied tension, as in the guitar 
string, but from the internal tensile strength of the material. 

 Factors like these mean that three-dimensional objects can have many more modes 
of vibration than an ideal string, and not all of these modes are necessarily harmoni-
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 Figure 1.4 
 Frequency spectra of a piano and a bell, each playing the note B 3  (247 Hz). 
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cally related. Thus, a metal plate of an  “ awkward ”  shape might make a rather disso-
nant, unmelodious  “ clink ”  when struck. Furthermore, whether certain modes are 
possible can depend on which points of the plate are fi xed, and which are struck. The 
situation becomes very complicated very quickly, even for relatively simple structures 
such as fl at, rectangular plates. For more complicated three-dimensional structures, 
like church bells, for example, understanding which modes are likely to be pro-
nounced and how the interplay of possible modes will affect the overall sound quality, 
or timbre, is as much an art as a science. 

 To illustrate these points,   fi gure 1.4  shows the frequency spectra of a piano note 
and of the chime of a small church bell. What exactly a frequency spectrum is is 
explained in greater detail later, but at this point it will suffi ce to say that a frequency 
spectrum tells us how much of a particular sinusoid is present in a complex sound. 
Frequency spectra are commonly shown using units of decibel (dB). Decibels are a 
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logarithmic unit, and they can be a little confusing, which is why we will soon say 
more about them.   

 To read   fi gure 1.4 , all you need to know is that when the value of the spectrum at 
one frequency is 20 dB greater than that at another, the amplitude at that frequency 
is ten times larger, but if the difference is 40 dB, then the amplitude is one hundred 
times greater, and if it is 60 dB, then it is a whopping one thousand times larger. The 
piano and the bell shown in   fi gure 1.4  both play the musical note B 3  (more about 
musical notes in chapter 3). This note is associated with a fundamental frequency of 
247 Hz, and after our discussion of modes of vibration, you will not be surprised that 
the piano note does indeed contain a lot of 247-Hz vibration, as well as frequencies 
that are integer multiples of 247 (namely, 494, 741, 988, 1,235, etc.). In fact, frequen-
cies that are not multiples of 247 Hz (all the messy bits below 0 dB in   fi gure 1.4 ) are 
typically 60 dB, that is, one thousand times smaller in the piano note than the string ’ s 
resonant frequencies. The spectrum of the bell, however, is more complicated. Again, 
we see that a relatively small number of frequencies dominate the spectrum, and each 
of these frequency components corresponds to one of the modes of vibration of the 
bell. But because the bell has a complex three-dimensional shape, these modes are not 
all exact multiples of the 247-Hz fundamental. 

 Thus, real objects do not behave like an idealized mass-spring system, in that they 
vibrate in numerous modes and at numerous frequencies, but they also differ from 
the idealized model in another important respect. An idealized mass-spring system 
should, once set in motion, carry on oscillating forever. Luckily, real objects settle 
down and stop vibrating after a while. (Imagine the constant din around us if they 
didn ’ t!) Some objects, like guitar strings or bells made of metal or glass, may continue 
ringing for several seconds, but vibrations in many other objects, like pieces of wood 
or many types of plastic, tend to die down much quicker, within just a fraction of a 
second. The reason for this is perhaps obvious. The movement of the oscillating mass 
represents a form of kinetic energy, which is lost to friction of some kind or another, 
dissipates to heat, or is radiated off as sound. For objects made of highly springy 
materials, like steel bells, almost all the kinetic energy is gradually emitted as sound, 
and as a consequence the sound decays relatively slowly and in an exponential 
fashion. The reason for this exponential decay is as follows. 

 The air resistance experienced by a vibrating piece of metal is proportional to the 
average velocity of the vibrating mass. (Anyone who has ever ridden a motorcycle 
appreciates that air resistance may appear negligible at low speeds but will become 
considerable at higher speeds.) Now, for a vibrating object, the average speed of 
motion is proportional to the amplitude of the vibration. If the amplitude declines by 
half, but the frequency remains constant, then the vibrating mass has to travel only 
half as far on each cycle, but the available time period has remained the same, so it 
need move only half as fast. And as the mean velocity declines, so does the air resis-
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tance that provides the breaking force for a further reduction in velocity. Conse-
quently, some small but constant fraction of the vibration amplitude is lost on each 
cycle — the classic conditions for exponential decay. Vibrating bodies made of less 
elastic materials may experience a fair amount of internal friction in addition to the 
air resistance, and this creates internal  “ damping ”  forces, which are not necessarily 
proportional to the amplitude of the vibration. Sounds emitted by such objects there-
fore decay much faster, and their decay does not necessarily have an exponential time 
course. 

 By way of example, look at   fi gure 1.5 , which shows sound waves from two musical 
instruments: one from a wooden castanet, the other from a metal glockenspiel bar. 
Note that the time axes for the two sounds do not cover the same range. The wooden 
castanet is highly damped, and has a decay constant of just under 30 ms (i.e., the 
sound takes 30 ms to decay to 1/ e  or about 37% of its maximum amplitude). The 
metal glockenspiel, in contrast, is hardly damped at all, and the decay constant of 
its vibrations is just under 400 ms, roughly twenty times longer than that of the 
castanet.   

 Thus, the speed and manner with which a sound decays gives another useful cue 
to the properties of the material an object is made of, and few people would have any 
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 Figure 1.5 
 A rapidly decaying (castanet) and a slowly decaying (glockenspiel) sound. The castanet sound 

is plotted twice, once on the same time axis as the glockenspiel, and again, in the inset, with 

a time axis that zooms in on the fi rst 70 ms. 
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diffi culty using it to distinguish the sound of a copper bar from that of bar made of 
silver, even though some research suggests that our ability to use these cues is not as 
good as it perhaps ought to be (Lutfi   &  Liu, 2007).  

 We hope the examples in this section illustrate that objects in our environment 
vibrate in complex ways, but these vibrations nevertheless tell us much about various 
physical properties of the object, its weight, its material, its size, and its shape. A 
vibrating object pushes and pulls on the air around it, causing vibrations in the air 
which propagate as sound (we will look at the propagation of sound in a little more 
detail later). The resulting sound is hardly ever a pure tone, but in many cases it will 
be made up of a limited number of frequencies, and these are often harmonically 
related. The correspondence between emitted frequencies and physical properties of 
the sound source is at times ambiguous. Low frequencies, for example, could be either 
a sign of high mass or of low tension. Frequency spectra are therefore not always easy 
to interpret, and they are not quite as individual as fi ngerprints; but they nevertheless 
convey a lot of information about the sound source, and it stands to reason that one 
of the chief tasks of the auditory system is to unlock this information to help us judge 
and recognize objects in our environment. Frequency analysis of an emitted sound is 
the fi rst step in this process, and we will return to the idea of the auditory system as 
a frequency analyzer in a number of places throughout this book. 

 1.3   Fourier Analysis and Spectra 

 In 1822, the French mathematician Jean Baptiste Joseph Fourier posited that any func-
tion whatsoever can be thought of as consisting of a mixture of sine waves,  1   and to 
this day we refer to the set of sine wave components necessary to make up some signal 
as the signal ’ s Fourier spectrum. It is perhaps surprising that, when Fourier came up 
with his idea, he was not studying sounds at all. Instead, he was trying to calculate 
the rate at which heat would spread through a cold metal ring when one end of it 
was placed by a fi re. It may be hard to imagine that a problem as arcane and prosaic 
as heat fl ow around a metal ring would be suffi ciently riveting to command the atten-
tion of a personality as big as Fourier ’ s, a man who twenty-four years earlier had 
assisted Napoleon Bonaparte in his conquests, and had, for a while, been governor of 
lower Egypt. But Fourier was an engineer at heart, and at the time, the problem of 
heat fl ow around a ring was regarded as diffi cult, so he had a crack at it. His reasoning 
must have gone something like this:  “ I have no idea what the solution is, but I have 
a hunch that, regardless of what form the solution takes, it must be possible to express 
it as a sum of sines and cosines, and once I know that I can calculate it. ”  Reportedly, 
when he fi rst presented this approach to his colleagues at the French Academy of 
Sciences, his presentation was met by polite silence and incomprehension. After 
all, positing a sum of sinusoids as a solution was neither obviously correct, nor 
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obviously helpful. But no one dared challenge him as he was too powerful a fi gure — a 
classic case of  “ proof by intimidation. ”  

 In the context of sounds, however, which, as we have learned, are often the result 
of sinusoidal, simple harmonic motion of mass-spring oscillators, Fourier ’ s approach 
has a great deal more immediate appeal. We have seen that there are reasons in physics 
why we would expect many sounds to be quite well described as a sum of sinusoidal 
frequency components, namely, the various harmonics. Fourier ’ s bold assertion that 
it ought to be possible to describe  any  function, and by implication also any variation 
in air pressure as a function of time (i.e.,  any  sound), seems to offer a nice, unifying 
approach. The infl uence of Fourier ’ s method on the study of sound and hearing has 
consequently been enormous, and the invention of digital computers and effi cient 
algorithms like the fast Fourier transform have made it part of the standard toolkit for 
the analysis of sound. Some authors have even gone so far as to call the ear itself a 
 “ biological Fourier analyzer. ”  This analogy between Fourier ’ s mathematics and the 
workings of the ear must not be taken too literally though. In fact, the workings of 
the ear only vaguely resemble the calculation of a Fourier spectrum, and later we will 
introduce better engineering analogies for the function of the ear. Perhaps this is just 
as well, because Fourier analysis, albeit mathematically very elegant, is in many 
respects also quite unnatural, if not to say downright weird. And, given how infl uential 
Fourier analysis remains to this day, it is instructive to pause for a moment to point 
out some aspects of this weirdness. 

 The mathematical formula of a pure tone is that of a sinusoid (  fi gure 1.6 ). To be 
precise, it is  A  ·   cos(2  π   ·  f  ·  t +  ϕ  ). The tone oscillates sinusoidally with amplitude  A,  
and goes through one full cycle of 2  π   radians  f  times in each unit of time  t.  The period 
of the pure tone is the time taken for a single cycle, usually denoted by either a capital 
T or the Greek letter  τ  (tau), and is equal to the inverse of the frequency 1 /f .   

 The tone may have had its maximal amplitude  A  at time 0, or it may not, so we 
allow a  “ starting phase parameter, ”    ϕ  , which we can use to shift the peaks of our 
sinusoid along the time axis as required. According to Fourier, we can describe any 
sound we like by taking a lot of sine wave equations like this, each with a different 

2ττ0–τ 3τ

A

 Figure 1.6 
 A pure tone  “ in cosine phase ”  (remember that cos(0) = 1). 
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frequency  f , and if we pick for each  f  exactly the right amplitude  A  and the right phase 
  ϕ ,  then the sum of these carefully picked sine waves will add up exactly to our arbitrary 
sound. 

 The sets of values of  A  and   ϕ   required to achieve this are known as the sound ’ s 
amplitude spectrum and phase spectrum, respectively. (Amplitude spectra we have 
encountered previously in   fi gure 1.4 , which effectively plotted the values of  A  for each 
of the numerous pure tone components making up the sound of a piano or a bell. 
Phase spectra, that is, the values of   ϕ   for each frequency component, are, as we will 
see, often diffi cult to interpret and are therefore usually not shown.) Note, however, 
that, expressed in this mathematically rigorous way, each sine wave component is 
defi ned for all times  t . Time 0 is just an arbitrary reference on the time axis; it is not 
in any real sense the time when the sound starts. The Fourier sine wave components 
making up the sound have no beginning and no end. They must be thought of as 
having started at the beginning of time and continuing, unchanging, with constant 
amplitude and total regularity, until the end of time. In that important respect, these 
mathematically abstract sine waves could not be more unlike  “ real ”  sounds. Most real 
sounds have clearly defi ned onsets, which occur when a sound source becomes 
mechanically excited, perhaps because it is struck or rubbed. And real sounds end 
when the oscillations of the sound source decay away. When exactly sounds occur, 
when they end, and how they change over time are perceptually very important to 
us, as these times give rise to perceptual qualities like rhythm, and let us react quickly 
to events signaled by particular sounds. Yet when we express sounds mathematically 
in terms of a Fourier transform, we have to express sounds that start and end in terms 
of sine waves that are going on forever, which can be rather awkward. 

 To see how this is done, let us consider a class of sounds that decay so quickly as 
to be almost instantaneous. Examples of this important class of  “ ultra-short ”  sounds 
include the sound of a pebble bouncing off a rock, or that of a dry twig snapping. 
These sound sources are so heavily damped that the oscillations stop before they ever 
really get started. Sounds like this are commonly known as  “ clicks. ”  The mathematical 
idealization of a click, a defl ection that lasts only for one single, infi nitesimally 
short time step, is known as an impulse (or sometimes as a delta-function). Impulses 
come in two varieties, positive-going  “ compression ”  clicks (i.e., a very brief upward 
defl ection or increase in sound pressure) or negative-going  “ rarefactions ”  (a transient 
downward defl ection or pressure decrease). 

 Because impulses are so short, they are, in many ways, a totally different type of 
sound from the complex tones that we have considered so far. For example, impulses 
are not suitable for carrying a melody, as they have no clear musical pitch. Also, think-
ing of impulses in terms of sums of sine waves may seem unnatural. After all, a click 
is too short to go through numerous oscillations. One could almost say that the defi n-
ing characteristic of a click is the predominant absence of sound: A click is a click only 
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because there is silence both before and immediately after it. How are we to produce 
this silence by adding together a number of  “ always on ”  sine waves of the form 
 A  ·   cos(2  π   ·  f  ·  t +  ϕ  )? The way to do this is not exactly intuitively obvious: We have 
to take an awful lot of such sine waves (infi nitely many, strictly speaking), all of dif-
ferent frequency  f , and get them to cancel each other out almost everywhere. To see 
how this works, consider the top panel of   fi gure 1.7 , which shows ten sine waves of 
frequencies 1 to 10 Hz superimposed. All have amplitude 1 and a starting phase of 0.   

 What would happen if we were to add all these sine waves together? Well at time 
 t =  0, each has amplitude 1 and they are all in phase, so we would expect their sum 
to have amplitude 10 at that point. At times away from zero, it is harder to guess what 
the value of the sum would be, as the waves go out of phase and we therefore have 
to expect cancellation due to destructive interference. But for most values of  t,  there 
appear to be as many lines above the x-axis as below, so we might expect a lot of 
cancellation, which would make the signal small. The middle panel in   fi gure 1.7  shows 
what the sum of the ten sine waves plotted in the top panel actually looks like, and 
it confi rms our expectations. The amplitudes  “ pile up ”  at  t =  0 much more than else-
where. But we still have some way to go to get something resembling a real impulse. 
What if we keep going, and keep adding higher and higher frequencies? The bottom 

−0.5 0.50

−0.5 0.50

−0.5 0.50

−1

0

1

−5

0

5

10

A
m

p
li
tu

d
e

−500

0

500

1000

Time

 Figure 1.7 
 Making an impulse from the superposition of a large number of sine waves. 
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panel shows what we get if we sum cosines of frequencies 1 to 1,000. The result is a 
great deal more clicklike, and you may begin to suspect that if we just kept going and 
added infi nitely many cosines of ever-increasing frequency, we would eventually,  “ in 
the limit ”  as mathematicians like to say, get a true impulse. 

 Of course, you may have noticed that, if we approximate a click by summing  n  
cosines, its amplitude is  n,  so that, in the limit, we would end up with an infi nitely 
large but infi nitely short impulse, unless, of course, we scaled each of the infi nitely 
many cosines we are summing to be infi nitely small so that their amplitudes at time 
0 could still add up to something fi nite. Is this starting to sound a little crazy? It prob-
ably is.  “ The limit ”  is a place that evokes great curiosity and wonder in the born 
mathematician, but most students who approach sound and hearing from a biological 
or psychological perspective may fi nd it a slightly confusing and disconcerting place. 
Luckily, we don ’ t really need to go there. 

 Real-world clicks are very short, but not infi nitely short. In fact, the digital audio 
revolution that we have witnessed over the last few decades was made possible only 
by the realization that one can be highly pragmatic and think of time as  “ quantized ” ; 
in other words, we posit that, for all practical purposes, there is a  “ shortest time inter-
val ”  of interest, know as the  “ sample interval. ”  The shortest click or impulse, then, 
lasts for exactly one such interval. The advantage of this approach is that it is possible 
to think of any sound as consisting of a series of very many such clicks — some large, 
some small, some positive, some negative, one following immediately on another. For 
human audio applications, it turns out that if we set this sample period to be less than 
about 1/40,000 of a second, a sound that is  “ sampled ”  in this manner is, to the human 
ear, indistinguishable from the original, continuous-time sound wave.  2     Figure 1.8  
shows an example of a sound that is  “ digitized ”  in this fashion.   

 Each constituent impulse of the sound can still be thought of as a sum of sine waves 
(as we have seen in   fi gure 1.7 ). And if any sound can be thought of as composed of 
many impulses, and each impulse in turn can be composed of many sine waves, then 
it follows that any sound can be made up of many sine waves. This is not exactly a 
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 One period of the vowel /a/ digitized at 44.1 kHz. 
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formal proof of Fourier ’ s theorem, but it will do for our purposes. Of course, to make 
up some arbitrary sound digitally by fusing together a very large number of scaled 
impulses, we must be able to position each of the constituent impulses very precisely 
in time. But if one of these impulses is now to occur at precisely some time  t  =  x , 
rather than at time 0 as in   fi gure 1.7 , then the sine waves making up that particular 
impulse must now all cancel at time 0, and pile up at time  x . To achieve this, we have 
to adjust the  “ phase term ”    ϕ   in the equation of each sine wave component of that 
impulse. In other words, at time  t = x,  we need  A  ·   cos(2  π   ·  f  ·  t +  ϕ  ) to evaluate to  A , 
which means cos(2  π   ·  f  ·  x +  ϕ  ) must equal 1, and therefore (2  π   ·  f  ·  x +  ϕ  ) must equal 
0. To achieve that, we must set the phase   ϕ   of each sine component to be exactly 
equal to   –  2  π   ·  f  ·  x . 

 Does this sound a little complicated and awkward? Well, it is, and it illustrates one 
of the main shortcomings of representing sounds in the frequency domain (i.e., as 
Fourier spectra): Temporal features of a sound become encoded rather awkwardly in 
the  “ phase spectrum. ”  A sound with a very simple time domain description like  “ click 
at time  t =  0.3, ”  can have a rather complicated frequency domain description such as: 
 “ sine wave of frequency  f =  1 with phase   ϕ  =  –  1.88496 plus sine wave of frequency  f 
=  2 with phase   ϕ  =  –  3.76991 plus sine wave of frequency  f =  3 with phase   ϕ  =  –  5.654867 
plus  …  ”  and so on. Perhaps the most interesting and important aspect of the click, 
namely, that it occurred at time  t =  0.3, is not immediately obvious in the click ’ s 
frequency domain description, and can only be inferred indirectly from the phases. 
And if we were to consider a more complex natural sound, say the rhythm of hoof 
beats of a galloping horse, then telling which hoof beat happens when just from 
looking at the phases of the Fourier spectrum would become exceedingly diffi cult. Of 
course, our ears have no such diffi culty, probably because the frequency analysis they 
perform differs in important ways from calculating a Fourier spectrum. 

 Both natural and artifi cial sound analysis systems get around the fact that time 
disappears in the Fourier spectrum by working out short-term spectra. The idea here 
is to divide time into a series of  “ time windows ”  before calculating the spectra. This 
way, we can at least say in which time windows a particular acoustic event occurred, 
even if it remains diffi cult to determine the timing of events inside any one time 
window. As we shall see in chapter 2, our ears achieve something that vaguely resem-
bles such a short-term Fourier analysis through a mechanical tuned fi lter bank. But to 
understand the ear ’ s operation properly, we fi rst must spend a little time discussing 
time windows, fi lters, tuning, and impulse responses. 

 1.4   Windowing and Spectrograms 

 As we have just seen, the Fourier transform represents a signal (i.e., a sound in the 
cases that interest us here) in terms of potentially infi nitely many sine waves that last, 



20 Chapter 1

in principle, an infi nitely long time. But infi nitely long is inconveniently long for 
most practical purposes. An important special case arises if the sound we are interested 
in is periodic, that is, the sound consists of a pattern that repeats itself over and over. 
Periodic sounds are, in fact, a hugely important class of acoustic stimuli, so much so 
that chapter 3 is almost entirely devoted to them. We have already seen that sounds 
that are periodic, at least to a good approximation, are relatively common in nature. 
Remember the case of the string vibrating at its fundamental frequency, plus higher 
harmonics, which correspond to the various modes of vibration. The higher harmon-
ics are all multiples of the fundamental frequency, and the while the fundamental 
goes through exactly one cycle, the harmonics will go through exactly two, three, 
four,  …  cycles. The waveform of such periodic sounds is a recurring pattern, and, we 
can therefore imagine that for periodic sounds time  “ goes around in circles, ”  because 
the same thing happens over and over again. To describe such periodic sounds, instead 
of a full-fl edged Fourier transform with infi nitely many frequencies, we only need a 
 “ Fourier series ”  containing a fi nite number of frequencies, namely, the fundamental 
plus all its harmonics up to the highest audible frequency. Imagine we record the 
sound of an instrument playing a very clean 100-Hz note; the spectrum of any one 
10-ms period of that sound would then be the same as that of the preceding and 
the following period, as these are identical, and with modern computers it is easy to 
calculate this spectrum using the discrete Fourier transform. 

 But what is to stop us from taking  any  sound, periodic or not, cutting it into small, 
say 10-ms wide,  “ strips ”  (technically known as time windows), and then calculating the 
spectrum for each? Surely, in this manner, we would arrive at a simple representation of 
how the distribution of sound frequencies changes over time. Within any one short 
time window, our spectral analysis still poorly represents temporal features, but we can 
easily see when spectra change substantially from one window to the next, making it a 
straightforward process to localize features in time to within the resolution afforded by 
a single time window. In principle, there is no reason why this cannot be done, and 
such windowing and short-term Fourier analysis methods are used routinely to calcu-
late a sound ’ s  spectrogram . In practice, however, one needs to be aware of a few pitfalls. 

 One diffi culty arises from the fact that we cannot simply cut a sound into pieces 
any old way and expect that this will not affect the spectrum. This is illustrated in 
  fi gure 1.9 . The top panel of the fi gure shows a 10-ms snippet of a 1-kHz tone, and its 
amplitude spectrum. A 1-kHz tone has a period of 1 ms, and therefore ten cycles of 
the tone fi t exactly into the whole 10 – ms-wide time window. A Fourier transform 
considers this 1-kHz tone as the tenth harmonic of a 100-Hz tone — 100 Hz because 
the total time window is 10 ms long, and this duration determines the period of the 
fundamental frequency assumed in the transform. The Fourier amplitude spectrum of 
the 1-kHz tone is therefore as simple as we might expect of a pure tone snippet: It 
contains only a single frequency component. So where is the problem? 
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 Well, the problem arises as soon as we choose a different time window, one in 
which the window duration is no longer a multiple of the period of the frequencies 
we wish to analyze. An example is shown in the second row of   fi gure 1.9 . We are still 
dealing with the same pure tone snippet, but we have now cut a segment out of it by 
imposing a rectangular window on it. The window function is shown in light gray. It 
is simply equal to 0 at all the time points we don ’ t want, and equal to 1 at all the 
time points we do want. This rectangular window function is the mathematical 
description of an on/off switch. If we multiply the window function with the sound 
at each time point then, we get 0 times sound equals 0 during the off period, and 1 
times sound equals sound in the on period. You might think that if you have a 1-kHz 
pure tone, simply switching it on and off to select a small segment for frequency 
analysis, should not alter its frequency content. You would be wrong.   

 Cast your mind back to   fi gure 1.7 , which illustrated the Fourier transform of a click, 
and in which we had needed an unseemly large number of sine waves just to cancel 
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 The effect of windowing on the spectrum. 
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the sound off where we didn ’ t want it. Something similar happens when we calculate 
the Fourier transform of a sine wave snippet where the period of the sine wave is not 
a multiple of the entire time window entered into the Fourier analysis. The abrupt 
onset and the offset create discontinuities, that is,  “ sudden sharp bends ”  in the wave-
form, and from the point of view of a Fourier analysis, discontinuities are broadband 
signals, made up of countless frequencies. You might be forgiven for thinking that 
this is just a bit of mathematical sophistry, which has little to do with the way real 
hearing works, but that is not so. Imagine a nerve cell in your auditory system, which 
is highly selective to a particular sound frequency, say a high frequency of 4,000 Hz 
or so. Such an auditory neuron should not normally respond to a 1,000-Hz tone,  unless  
the 1-kHz tone is switched on or off very suddenly. As shown in the middle panel of 
  fi gure 1.9 , the onset and offset discontinuities are manifest as  “ spectral splatter, ”  which 
can extend a long way up or down in frequency, and are therefore  “ audible ”  to our 
hypothetical 4-kHz cell. 

 This spectral splatter, which occurs if we cut a sound wave into arbitrary chunks, 
can also plague any attempt at spectrographic analysis. Imagine we want to analyze 
a so-called frequency-modulated sound. The whining of a siren that starts low and 
rises in pitch might be a good example. At any one moment in time this sound is a 
type of complex tone, but the fundamental shifts upward. To estimate the frequency 
content at any one time, cutting the sound into short pieces and calculating the 
spectrum for each may sound like a good idea, but if we are not careful, the cutting 
itself is likely to introduce discontinuities that will make the sound appear a lot more 
broadband than it really is. These cutting artifacts are hard to avoid completely, but 
some relatively simple tricks help alleviate them considerably. The most widely used 
trick is to avoid sharp cutoffs at the onset and offset of each window. Instead of rect-
angular windows, one uses ramped windows, which gently fade the sound on and off. 
The engineering mathematics literature contains numerous articles discussing the 
advantages and disadvantages of ramps with various shapes. 

 The bottom panels of   fi gure 1.9  illustrate one popular type, the Hanning window, 
named after the mathematician who fi rst proposed it. Comparing the spectra obtained 
with the rectangular window and the Hanning window, we see that the latter has 
managed to reduce the spectral splatter considerably. The peak around 1 kHz is perhaps 
still broader than we would like, given that in this example we started off with a pure 
1-kHz sine, but at least we got rid of the ripples that extended for several kilohertz up 
the frequency axis. Appropriate  “ windowing ”  is clearly important if we want to 
develop techniques to estimate the frequency content of a sound. But, as we men-
tioned, the Hanning window shown here is only one of numerous choices. We could 
have chosen a Kaiser window, or a Hamming window, or simply a linear ramp with 
a relatively gentle slope. In each case, we would have got slightly different results, but, 
and this is the important bit, any of these would have been a considerable improve-
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ment over the sharp onset of the rectangular window. The precise choice of window 
function is often a relatively minor detail, as long as the edges of the window consist 
of relatively gentle slopes rather than sharp edges. 

 The really important take-home message, the one thing you should remember from 
this section even if you forget everything else, is this: If we want to be able to resolve 
individual frequencies accurately, then we must avoid sharp onset and offset discon-
tinuities. In other words, we must have sounds (or sound snippets created with a 
suitably chosen analysis window) that fade on and off gently — or go on forever, but 
that is rarely a practical alternative. Sharp, accurate frequency resolution requires 
gentle fade-in and fade-out, which in turn means that the time windows cannot be 
very short. This constraint relates to a more general problem, the so-called time-
frequency trade-off. 

 Let us assume you want to know exactly when in some ongoing soundscape a 
frequency component of precisely 500 Hz occurs. Taking on board what we have just 
said, you record the sound and cut it into (possibly overlapping) time windows for 
Fourier analysis, taking care to ramp each time window on and off gently. If you want 
the frequency resolution to be very high, allowing great spectral precision, then the 
windows have to be long, and that limits your  temporal  precision. Your frequency 
analysis might be able to tell you that a frequency very close to 500 Hz occurred 
somewhere within one of your windows, but because each window has to be fairly 
long, and must have  “ fuzzy, ”  fading edges in time, determining exactly when the 
500-Hz frequency component started has become diffi cult. You could, of course, make 
your window shorter, giving you greater temporal resolution. But that would reduce 
your frequency resolution. This time-frequency trade-off is illustrated in   fi gure 1.10 , 
which shows a 3-kHz tone windowed with a 10-ms, 5-ms, or 1-ms-wide Hanning 
window, along with the corresponding amplitude spectrum.   

 Clearly, the narrower the window gets in time, the greater the precision with which 
we can claim what we are looking at in   fi gure 1.10  happens at time  t  = 5 ms, and not 
before or after; but the spectral analysis produces a broader and broader peak, so it is 
increasingly less accurate to describe the signal as a 3-kHz pure tone rather than 
a mixture of frequencies around 3 kHz. 

 This time-frequency trade-off has practical consequences when we try to analyze 
sounds using spectrograms. Spectrograms, as mentioned earlier, slide a suitable window 
across a sound wave and calculate the Fourier spectrum in each window to estimate 
how the frequency content changes over time.   Figure 1.11  shows this for the castanet 
sound we had already seen in   fi gure 1.5  (p. 13). The spectrogram on the left was 
calculated with a very short, 2.5-ms-wide sliding Hanning window, that on the right 
with a much longer, 21-ms-wide window. The left spectrogram shows clearly that the 
sound started more or less exactly at time  t    = 0, but it gives limited frequency 
resolution. The right spectrogram, in contrast, shows the resonant frequencies of the 
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 The time-frequency trade-off: Short temporal analysis windows give high temporal precision but 

poor spectral resolution. 

castanet in considerably greater detail, but is much fuzzier about when exactly the 
sound started.   

 The trade-off between time and frequency resolution is not just a problem for arti-
fi cial sound analysis systems. Your ears, too, would ideally like to have both very high 
temporal resolution, telling you exactly when a sound occurred, and very high fre-
quency resolution, giving you a precise spectral fi ngerprint, which would help you 
identify the sound source. Your ears do, however, have one little advantage over arti-
fi cial sound analysis systems based on windowed Fourier analysis spectrograms. They 
can perform what some signal engineers have come to call multiresolution analysis. 

 To get an intuitive understanding of what this means, let us put aside for the 
moment the defi nition of frequency as being synonymous with sine wave component, 
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 Figure 1.11 
 Spectrograms of the castanet sound plotted in fi   gure 1.5 , calculated with either a short (left) or 

long (right) sliding Hanning window. 

and instead return to the  “ commonsense ”  notion of a frequency as a measure of how 
often something happens during a given time period. Let us assume we chose a time 
period (our window) which is 1 s long, and in that period we counted ten events of 
interest (these could be crests of a sound wave, or sand grains falling through an hour 
glass, or whatever). We would be justifi ed to argue that, since we observed ten events 
per second — not nine, and not eleven — the events happen with a frequency of 10 Hz. 
However, if we measure frequencies in this way, we would probably be unable to 
distinguish 10-Hz frequencies from 10.5-Hz, or even 10.9-Hz frequencies, as we cannot 
count half events or other event fractions. The 1-s analysis window gives us a fre-
quency resolution of about 10% if we wanted to count events occurring at frequencies 
of around 10 Hz. But if the events of interest occurred at a higher rate, say 100 Hz, 
then the inaccuracy due to our inability to count fractional events would be only 1%. 
The precision with which we can estimate frequencies in a given, fi xed time window 
is greater if the frequency we are trying to estimate is greater. 

 We could, of course, do more sophisticated things than merely count the number 
of events, perhaps measuring average time intervals between events for greater accu-
racy, but that would not change the fundamental fact that  for accurate frequency esti-
mation, the analysis windows must be large compared to the period of the signal whose 
frequency we want to analyze.  Consequently, if we want to achieve a certain level of 
accuracy in our frequency analysis, we need very long time windows if the frequencies 
are likely to be very low, but we can get away with much shorter time windows if we 
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can expect the frequencies to be high. In standard spectrogram (short-term Fourier) 
analysis, we would have to choose a single time window, which is long enough to be 
suitable for the lowest frequencies of interest. But our ears work like a mechanical 
fi lter bank, and, as we shall see, they can operate using much shorter time windows 
when analyzing higher frequency sounds than when analyzing low ones. To get a 
proper understanding of how this works, we need to brush up our knowledge of fi lters 
and impulse responses. 

 1.5   Impulse Responses and Linear Filters 

 To think of an impulse as being made up of countless pure-tone frequency compo-
nents, each of identical amplitude, as we have seen in   fi gure 1.7 , is somewhat strange, 
but it can be useful. Let us get back to the idea of a simple, solid object, like a bell, a 
piece of cutlery, or a piece of wood, being struck to produce a sound. In striking the 
object, we deliver an impulse: At the moment of impact, there is a very brief pulse of 
force. And, as we have seen in sections 1.1 and 1.2, the object responds to this force 
pulse by entering into vibrations. In a manner of speaking, when we strike the object 
we deliver to it all possible vibration frequencies simultaneously, in one go; the object 
responds to this by taking up some of these vibration frequencies, but it does not 
vibrate at all frequencies equally. Instead, it vibrates strongly only at its own resonance 
frequencies. Consequently, we can think of a struck bell or tuning fork as a sort of 
 mechanical frequency fi lter . The input may contain all frequencies in equal measure, 
but only resonant frequencies come out. Frequencies that don ’ t fi t the object ’ s 
mechanical tuning properties do not pass. 

 We have seen, in   fi gure 1.5,  that tuning forks, bells, and other similar objects are 
damped. If you strike them to make them vibrate, their impulse response is an expo-
nentially decaying oscillation. The amplitude of the oscillation declines more or less 
rapidly (depending on the damping time constant), but in theory it should never 
decay all the way to zero. In practice, of course, the amplitude of the oscillations will 
soon become so small as to be effectively zero, perhaps no larger than random thermal 
motion and in any case too small to detect with any conceivable piece of equipment. 
Consequently, the physical behavior of these objects can be modeled with great accu-
racy by so-called  fi nite impulse response fi lters  (FIRs).  3   Their impulse responses are said 
to be fi nite because their ringing does not carry on for ever. FIRs are  linear systems . 
Much scientifi c discussion has focused on whether, or to what extent, the ear and the 
auditory system themselves might usefully be thought of as a set of either mechanical 
or neural linear fi lters. Linearity and nonlinearity are therefore important notions that 
recur in later chapters, so we should spend a moment familiarizing ourselves with 
these ideas. The defi ning feature of a linear system is a  proportionality relationship  
between input and output. 
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 Let us return to our example of a guitar string: If you pluck a string twice as hard, 
it will respond by vibrating with twice the amplitude, and the sound it emits will be 
correspondingly louder, but it will otherwise sound much the same. Because of this 
proportionality between input and output, if you were to plot a graph of the force  F  
with which you pluck the string against the amplitude  A  of the evoked vibration, you 
would get a  straight line graph , hence the term  “ linear. ”  The graph would be described 
by the equation  A = F  ·  p , where  p  is the proportionality factor which our linear system 
uses as it converts force input into vibration amplitude output. As you can hopefully 
appreciate from this, the math for linear systems is particularly nice, simple, and 
familiar, involving nothing more than elementary-school arithmetic. The corner shop 
where you bought sweets after school as a kid was a linear system. If you put twice as 
many pennies in, you got twice as many sweets out. Scientists, like most ordinary 
people, like to avoid complicated mathematics if they can, and therefore tend to like 
linear systems, and are grateful that Mother Nature arranged for so many natural laws 
to follow linear proportionality relationships. The elastic force exerted by a stretched 
spring is proportional to how far the spring is stretched, the current fl owing through 
an ohmic resistor is proportional to the voltage, the rate at which liquid leaks out of 
a hole at the bottom of a barrel is proportional to the size of the hole, the amplitude 
of the sound pressure in a sound wave is proportional to the amplitude of the vibra-
tion of the sound source, and so on. 

 In the case of FIR fi lters, we can think of the entire impulse response as a sort of 
extension of the notion of proportional scaling in a way that is worth considering 
a little further. If we measure the impulse response (i.e., the ping) that a glass of water 
makes when it is tapped lightly with a spoon, we can predict quite easily and accu-
rately what sound it will make if it is hit again, only 30% harder. It will produce very 
much the same impulse response, only scaled up by 30%. There is an important caveat, 
however:  Most things in nature are only approximately linear ,  over a limited range   of inputs . 
Strike the same water glass very hard with a hammer, and instead of getting a greatly 
scaled up but otherwise identical version of the previous ping impulse response, you 
are likely to get a rather different, crunch and shatter sort of sound, possibly with 
a bit of a splashing mixed in if the glass wasn ’ t empty. Nevertheless, over a reasonably 
wide range of inputs, and to a pretty good precision, we can think of a water glass in 
front of us as a linear system. Therefore, to a good fi rst-order approximation, if we 
know the glass ’  impulse response, we know all there is to know about the glass, at 
least as far as our ears are concerned. 

 The impulse response will allow us to predict what the glass will sound like in 
many different situations, not just if it is struck with a spoon, but also, for example, 
if it was rubbed with the bow of a violin, or hit by hail. To see how that works, look 
at   fi gure 1.12,  which schematically illustrates impulses and impulse responses. The 
middle panels show a  “ typical ”  impulse response of a resonant object, that is, an 
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 Outputs (right panels) that result when a fi nite impulse response fi lter (middle panels) is excited 

with a number of different inputs (left panels). 

exponentially decaying oscillation. To keep the fi gure easy to read, we chose a 
very short impulse response (of a heavily damped object) and show the inputs, 
impulse response, and the outputs as discrete, digitized, or sampled signals, just as 
in   fi gure 1.8 . 

   In the top row of   fi gure 1.12,  we see what happens when we deliver a small, slightly 
delayed impulse to that fi lter (say a gentle tap with a spoon on the side of a glass). 
After our recent discussion of impulse responses and linearity, you should not fi nd it 
surprising that the  “ output, ”  the evoked vibration pattern, is simply a scaled, delayed 
copy of the impulse response function. In the second row, we deliver two impulses 
to the same object (we strike it twice in succession), but the second impulse, which 
happens after a slightly larger delay, is delivered from the other side, that is, the force 
is delivered in a negative direction. The output is simply a  superposition  of two impulse 
responses, each scaled and delayed appropriately, the second being  “ turned upside-
down ”  because it is scaled by a negative number (representing a force acting in 
the opposite direction). This should be fairly intuitive: Hit a little bell twice in quick 
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succession, and you get two pings, the second following, and possibly overlapping 
with, the fi rst. 

 In the second row example, the delay between the two pulses is long enough for 
the fi rst impulse response to die down to almost nothing before the second response 
starts, and it is easy to recognize the output as a superposition of scaled and delayed-
impulse responses. But impulses may, of course, come thick and fast, causing impulse 
responses to overlap substantially in the resulting superposition, as in the example in 
the third row. This shows what might happen if the fi lter is excited by a form of  “ shot 
noise, ”  like a series of hailstones of different weights, raining down on a bell at rapid 
but random intervals. Although it is no longer immediately obvious, the output is still 
simply a superposition of lots of copies of the impulse response, each scaled and 
delayed appropriately according to each impulse in the input. You may notice that, 
in this example, the output looks fairly periodic, with positive and negative values 
alternating every eight samples or so, even though the input is rather random (noisy) 
and has no obvious periodicity at eight samples. The periodicity of the output does, 
of course, refl ect the fact that the impulse response, a damped sine wave with a period 
of eight, is itself strongly periodic. Put differently, since the period of the output is 
eight samples long, this FIR fi lter has a resonant frequency which is eight times slower 
than (i.e., one-eighth of) the sample frequency. If we were to excite such an FIR fi lter 
with two impulses spaced four samples apart, then the output, the superposition of 
two copies of the impulse response starting four samples apart, would be subject to 
destructive interference, the peaks in the second impulse response are canceled to 
some extent by the troughs in the fi rst, which reduces the overall output. 

 If, however, the input contains two impulses exactly eight samples apart, then the 
output would benefi t from constructive interference as the two copies of the impulse 
response are superimposed with peak aligned with peak. If the input contains impulses 
at various, random intervals, as in the third row of   fi gure 1.12 , then the constructive 
interference will act to amplify the effect of impulses that happen to be eight samples 
apart, while destructive interference will cancel out the effect of features in the input 
that are four samples apart; in this manner, the fi lter selects out intervals that match 
its own resonant frequency. Thus, hailstones raining down on a concrete fl oor (which 
lacks a clear resonance frequency) will sound like noise, whereas the same hailstones 
raining down on a bell will produce a ringing sound at the bell ’ s resonant frequency. 
The bell selectively amplifi es (fi lters) its own resonant frequencies out of the frequency 
mixture present in the hailstorm input. 

 In the fourth row of   fi gure 1.12,  we consider one fi nal important case. Here, instead 
of delivering a series of isolated impulses to the fi lter, we give it a sine wave cycle 
as input. This is a bit like, instead of striking a water glass with a spoon, we were to 
push a vibrating tuning fork against it. The onset and offset of the sine wave were 
smoothed off with a Hanning window. The frequency of the sine wave of the input 
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(one-twentieth of the sample rate) is quite a bit slower than the resonant frequency 
of the fi lter (one-eighth of the sample rate). What is hopefully quite obvious is that 
the output is again a sine whose frequency closely matches that of the input. 

 This illustrates a very important property of linear systems. Linear fi lters cannot 
introduce new frequency components; they can only scale each frequency component 
of the input up or down, and change its phase by introducing delays. Linear systems 
are therefore said to be sine wave in — sine wave out. Conversely, if we observe that a 
particular system responds to sine inputs with sine outputs that match the input 
frequency, then we would take that as an indication that the system is linear. And 
this holds true even if the input is a mixture of several sine waves. In that case, the 
output of the linear fi lter will also be a frequency mixture, and the relative amplitudes 
of the various frequency components may have changed dramatically, but there will 
be no components at frequencies that were not present in the input. (Nonlinear fi lters, 
in contrast, will quite commonly introduce frequencies into the output signal that 
weren ’ t there in the input!)  

 Because we had ramped the sine wave input on and off gently with a Hanning 
window, the frequency content of this sine cycle is narrow, and contains very little 
energy at frequencies besides one-twentieth of the sample rate. This input therefore 
cannot excite the resonant frequency of the linear fi lter, and, unlike in the hailstones 
example in the third row, oscillations with a period of eight samples are not apparent 
in the output. The impulse response of the fi lter itself, however, has a very sharp onset, 
and this sharp onset makes its frequency response somewhat broadband. The input 
frequency of one-twentieth of the sample rate can therefore pass through the fi lter, 
but it does lose some of its amplitude since it poorly matches the fi lter ’ s resonant 
frequency. If the impulse response of the fi lter had a gentler onset, its frequency 
response might well be narrower, and it would attenuate (i.e., reduce the amplitude 
of) frequencies that are further from its own resonant frequency more strongly. 

 In fact, fi lters with suitably chosen impulse responses can become quite highly 
selective for particular frequencies. We illustrate this in   fi gure 1.13 , which shows what 
happens when a frequency-modulated signal, a so-called FM sweep, is fi ltered through 
a so-called gamma-tone fi lter. A gamma-tone is simply a sinusoid that is windowed 
(i.e., ramped on and off) with a gamma function. The only thing we need to know 
about gamma functions for the purposes of this book is that they can take the shape 
of a type of skewed bell, with a fairly gentle rise and an even gentler decay. Gamma-
tone fi lters are of some interest to hearing researchers because, as we will see in chapter 
2, suitably chosen gamma-tone fi lters may provide a quite reasonable fi rst-order 
approximation to the mechanical fi ltering with which the cochlea of your inner ear 
analyzes sound. So, if we fi lter a signal like an FM sweep with a gamma-tone fi lter, in 
a manner of speaking, we see the sound through the eyes of a point on the basilar 
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membrane of your inner ear (more about that in the next chapter, and apologies for 
the mixed metaphor). 

 When we say the input to the fi lter is frequency modulated, we simply mean that 
its frequency changes over time. In the example shown in the top panel of   fi gure 1.13 , 
the frequency starts off low but then increases. We made the signal in this example 
by computer, but you might encounter such frequency modulation in real-world 
sounds, for example, if you plucked the string on a guitar and then, while the string 
is still vibrating, either run your fi nger down the string along the fret board, making 
the vibrating part of the string effectively shorter, or if you wind up the tension on 
the string, increasing its effective stiffness. 

   When we compare the gamma-tone fi lter in   fi gure 1.13  with the wave-form of the 
FM sweep, it should be reasonably obvious that the resonant frequency of the gamma-
tone fi lter matches the frequency of the FM sweep in some places, but not in others. 
In fact, the match between these frequencies starts off and ends up very poor (the 
frequency of the FM sweep is initially far too low and eventually far too high), but 
somewhere just over halfway through the frequency of the FM sweep matches that of 

Input (FM sweep)

Gamma tone filter

Output (”convolution”)

 Figure 1.13 
 An FM sweep fi ltered by a gamma-tone fi lter. 
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the fi lter rather well. And because the gamma-tone is gently ramped on and off, we 
expect its frequency bandwidth to be quite narrow, so as the FM sweep is fi ltered 
through the gamma-tone fi lter, we expect to see very little in the output at times where 
the frequencies do not match. These expectations are fully borne out in the third panel 
of   fi gure 1.13 , which shows the output of the gamma-tone fi lter, plotted as a thick 
black line superimposed on the original FM sweep input plotted in gray. Frequencies 
other than those that match the fi lter ’ s resonance characteristics are strongly 
suppressed. 

 It is not diffi cult to imagine that, if we had a whole series of such gamma-tone 
fi lters, each tuned to a slightly different frequency and arranged in order, we could 
use the resulting gamma-tone fi lter bank to carry out a detailed frequency analysis of 
incoming sounds and calculate something very much like a spectrogram on the fl y 
simply by passing the sounds through all the fi lters in parallel as they come in. As it 
happens, we are all equipped with such fi lter banks. We call them  “ ears, ”  and we will 
look at their functional organization in greater detail in the next chapter. But fi rst 
we need to add a few brief technical notes to conclude this section, and we shall see 
how what we have just learned about fi lters and impulse responses can help us under-
stand voices. We also need to say a few things about the propagation of sound waves 
through air. 

 First, the technical notes. Calculating the output of an FIR fi lter by superimposing 
a series of scaled and delayed copies of the impulse response is often referred to as 
calculating the  convolution  of the input and the impulse responses. Computing con-
volutions is sometimes also referred to as convolving. If you look up  “ convolution, ”  
you will most likely be offered a simple mathematical formula by way of defi nition, 
something along the lines of  “ the convolution ( f ∗ g )( t ) of input  f  with impulse 
response  g  equals   Σ  (  g ( t  –   τ  )   ·  f (  τ  )) over all  τ . ”  This is really nothing but mathematical 
shorthand for the process we have described graphically in   fi gure 1.12 . The  g ( t  –   τ  ) bit 
simply means we take copies of the impulse response, each delayed by a different 
delay  τ  (tau), and we then scale each of these delayed copies by the value of the input 
that corresponds to that delay [that ’ s the  “    ·  f (  τ  ) ”  bit], and then superimpose all these 
scaled and delayed copies on top of one another, that is, we sum them all up (that ’ s 
what the  “  Σ  over all  τ  ”  means). 

 One thing that might be worth mentioning in passing is that convolutions are 
commutative, meaning that if we convolve a waveform  f  with another waveform  g,  it 
does not matter which is the input and which is the impulse response. They are inter-
changeable and swapping them around would give us the same result: (  f  ∗  g )( t )  =  
(  g  ∗  f  )( t ). 

 Another thing worth mentioning is that making computers calculate convolutions 
is quite straightforward, and given that so many real-world phenomena can be quite 
adequately approximated by a linear system and therefore described by impulse 
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responses, convolution by computer allows us to simulate all sorts of phenomena or 
situations. Suppose, for example, you wanted to produce a radio crime drama, and it 
so happens that, according to the scriptwriter, the story line absolutely must culminate 
in a satanic mass that quickly degenerates into a violent shootout, all taking place 
right around the altar of the highly reverberant acoustic environment of Oxford ’ s 
Christ Church cathedral. To ensure that it sounds authentic, you asked the Dean of 
Christ Church for permission to record the fi nal scene inside the cathedral, but 
somehow he fails to be convinced of the artistic merit of your production, and declines 
to give you permission. But recorded in a conventional studio, the scene sounds fl at. 
So what do you do? 

 Well, acoustically speaking, Christ Church cathedral is just another linear system, 
with reverberations, echoes, and resonances that can easily be captured entirely by its 
impulse response. All you need to do is make one decent  “ impulse ”  inside the cathe-
dral. Visit the cathedral at a time when few visitors are around, clap your hands 
together hard and, using a portable recorder with a decent microphone, record the 
sound that is produced, with all its reverberation. Then use a computer to convolve 
the studio recorded drama with the canned Christ Church impulse response, and 
presto, the entire scene will sound as if it was recorded inside the cathedral. Well, 
almost. The cathedral ’ s impulse response will vary depending on the location of both 
the sound receiver and the source — the clapping hands — so if you want to create a 
completely accurate simulation of acoustic scenes that take place in, or are heard from, 
a variety of positions around the cathedral, you may need to record separate impulse 
responses for each combination of listener and sound source position. But passable 
simulations of reverberant acoustic environments are possible even with entirely 
artifi cial impulse responses derived on computer models. (See the book ’ s Web site, 
auditoryneuroscience.com, for a demonstration.) 

  Or imagine you wanted to make an electronic instrument, a keyboard that can 
simulate sounds of other instruments including the violin. You could, of course, 
simply record all sorts of notes played on the violin and, when the musician presses 
the key on the keyboard, the keyboard retrieves the corresponding note from memory 
and plays it. The problem with that is that you do not know in advance for how long 
the musician might want to hold the key. If you rub the bow of a violin across a string 
it pulls the string along a little, then the string jumps, then it gets pulled along some 
more, then it jumps again a little, and so on, producing a very rapid and somewhat 
irregular saw-tooth force input pattern. Such a saw-tooth pattern would not be diffi cult 
to create by computer on the fl y, and it can then be convolved with the strings ’  
impulse responses, that is, sounds of the strings when they were plucked, to simulate 
the sound of bowed strings. Of course, in this way you could also simulate what it 
would sound like if objects were  “ bowed ”  that one cannot normally bow, but for 
which one can either record or simulate impulse responses: church bells, plastic 
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bottles, pieces of furniture, and so on. Convolution is thus a surprisingly versatile little 
tool for the computer literate who enjoy being scientifi cally or artistically creative. 

 1.6   Voices 

 One very widespread class of natural sounds, which is much easier to understand now 
that we have discussed impulse responses and convolutions, is voices. Given their 
central role in spoken words, song, and animal communication, voices are a particu-
larly important class of sounds, and like many other sounds that we have discussed 
already, voices too are a kind of pulse-resonance sound. When humans or other 
mammals vocalize, they tighten a pair of tissue fl aps known as vocal folds across their 
airways (the larynx), and then exhale to push air through the closed vocal folds. The 
vocal folds respond by snapping open and shut repeatedly in quick succession, pro-
ducing a series of rapid clicks known as  “ glottal pulses. ”  These glottal pulses then 
 “ ring ”  through a series of resonant cavities, the vocal tract , which includes the throat, 
the mouth, and the nasal sinuses. (Look for a video showing human vocal folds in 
action on the book ’ s Web site.) When we speak, we thus effectively convolve a glottal 
pulse train with the resonant fi lter provided by our vocal tract, and we can change 
our voice, in rather different and interesting ways, either by changing the glottal pulse 
train or by changing the vocal tract. 

  First, let us consider the glottal pulse train, and let us assume for simplicity that 
we can approximate this as a series of  “ proper ”  impulses at very regular intervals. 
Recall from   fi gure 1.7  that any impulse can be thought of as a superposition of infi -
nitely many sine waves, all of the same amplitude but different frequency, and with 
their phases arranged in such a way that they all come into phase at the time of the 
impulse but at no other time. What happens with all these sine waves if we deal not 
with one click, but with a series of clicks, spaced at regular intervals? 

 Well, each click is effectively its own manifestation of infi nitely many sine waves, 
but if we have more than one click, the sine waves of the individual clicks in the click 
train will start to interfere, and that interference can be constructive or destructive. 
In fact, the sine components of the two clicks will have the same phase if the click 
interval happens to be an integer (whole number) multiple of the sine wave period, 
in other words if exactly one or two or three or  n  periods of the sine wave fi t between 
the clicks. The top panel of   fi gure 1.14  may help you appreciate that fact. Since 
these sine waves are present, and in phase, in all clicks of a regular click train 
of a fi xed interval, they will interfere constructively and be prominent in 
the spectrum of the click train. However, if the click interval is 1/2, or 3/2, or 5/2,  …  
of the sine period, then the sine components from each click will be exactly out 
of phase, as is shown in the bottom panel of   fi gure 1.14 , and the sine components 
cancel out. 
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 Figure 1.14 
 Sine components of click trains interfere constructively when the sine period is an integer 

multiple of the click interval, but not otherwise. 

   The upshot of this is that a regular, periodic click train is effectively a type of 
sound that we have already encountered in section 1.2, namely, a type of complex 
tone, made up of a fundamental frequency and an infi nite number of higher har-
monics, all of equal amplitude. The periods of the harmonics are equal to 1/1, 1/2, 
1/3,  …  1/ n  of the click interval, and their frequencies are accordingly multiples of 
the fundamental. Consequently, the closer the clicks are spaced in time, the wider 
apart the harmonics are in frequency. 

 All of this applies to glottal pulse trains, and we should therefore not be surprised 
that the spectrogram of voiced speech sounds exhibits many pronounced harmonics, 
reaching up to rather high frequencies. But these glottal pulse trains then travel 
through the resonators of the vocal tract. Because the resonant cavities of the throat, 
mouth, and nose are linear fi lters, they will not introduce any new frequencies, but 
they will raise the amplitude of some of the harmonics and suppress others. 

 With this in mind, consider the spectrogram of the vowel /a/, spoken by a male 
adult, shown in   fi gure 1.15 . The spectrogram was generated with a long time window, 
to resolve the harmonics created by the glottal pulse train, and the harmonics are 
clearly visible as spectral lines, every 120 Hz or so. However, some of the harmonics 
are much more pronounced than others. The harmonics near 700 to 1,200 Hz are 
particularly intense, while those between 1,400 and 2,000 Hz are markedly weaker, 
and then we see another peak at around 2,500 Hz, and another at around 3,500 Hz. 
To a fi rst approximation, we can think of each of the resonators of the vocal tract as 
a band pass fi lter with a single resonant frequency. These resonant frequencies are 
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 Figure 1.15 
 Spectrogram of the vowel  “ a. ”  

known as  “ formants, ”  and those harmonics that lie close to the formant frequencies 
will be scaled up relative to the others, which leads to the peaks we have just observed. 

   One important feature of our voice is that it gives us independent control of the 
harmonic and the formant frequencies. We change the harmonic frequencies by 
putting more or less tension on our vocal folds. The higher the tension, the faster the 
glottal pulse train, which leads to a higher fundamental frequency and more widely 
spaced harmonics, and the voice is perceived as higher pitched. We control the 
formant frequencies by moving various parts of our vocal tract, which are commonly 
referred to as  “ articulators, ”  and include the lips, jaws, tongue, and soft palate. Moving 
the articulators changes the size and shape of the resonance cavities in the vocal tract, 
which in turn changes their resonant frequencies, that is, the formants. 

 Altering the formants does not affect the pitch of the speech sound, but its timbre, 
and therefore its  “ type ”  may change quite dramatically; for example, we switch 
between /o/- and /a/-like vowels simply by widening the opening of our lips and jaw. 
Thus, we control which vowel we produce by changing the formant frequencies, and 
we control the pitch at which we speak or sing a vowel by changing the harmonic 
frequencies. This can be seen quite clearly in   fi gure 1.16 , which shows spectrograms 
of the words  “ hot, ”   “ hat, ”   “ hit, ”  and  “ head, ”  spoken by different native speakers of 
British English, one with a high-pitched, childlike voice (top row) and then again in 
a lower-pitched voice of an adult female (bottom row). (A color version of that fi gure, 
along with the corresponding sound recordings, can be found on the  “ vocalizations 
and speech ”  section of the book ’ s Web site.) 
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    The vowels in the spoken words are readily apparent in the  “ harmonic stacks ”  that 
mark the arrival of the glottal pulse train, and the spacing of the harmonics is clearly 
much wider in the high-pitched than in the low-pitched vowels. The fact that, in some 
of the sounds, the harmonics aren ’ t exactly horizontal tells us that the pitch of these 
vowels was not perfectly steady (this is particularly noticeable in the high-pitched 
 “ hot ”  and  “ head ” ). Where exactly the formants are in these vowels is perhaps not 
quite so readily apparent to the unaided eye. (Formants are, in fact, easier to see in 
spectrograms that have short time windows, and hence a more blurred frequency reso-
lution, but then the harmonics become hard to appreciate.) But it is nevertheless quite 
clear that, for example, in the /i/ sounds the harmonics around 500 Hz are very promi-
nent, but there is little sound energy between 800 and 2000 Hz, until another peak is 
reached at about 2,300 Hz, and another near 3,000 Hz. In contrast, in the /a/ vowels, 
the energy is much more evenly distributed across the frequency range, with peaks 
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 Figure 1.16 
 Spectrograms of the words  “ hot, ”   “ hat, ”   “ hit, ”  and  “ head, ”  spoken in a high-pitched (top row) 

and a low-pitched (bottom row) voice. 
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perhaps around 800, 1,800, and 2,500 Hz, while the /o/ sound has a lot of energy at 
a few hundred hertz, up to about 1,100 Hz, then much less until one reaches another 
smaller peak at 2,500 Hz. 

 Of course, there is more to the words  “ hot, ”   “ hat, ”   “ hit, ”  and  “ head ”  than merely 
their vowels. There are also the consonants  “ h ”  at the beginning and  “ t ”  or  “ d ”  at the 
end. Consonants can be subdivided into different classes depending on a number of 
criteria. For example, consonants can be  “ voiced ”  or  “ unvoiced ” . If they are voiced, 
the vocal folds are moving and we would expect to see harmonics in their spectrogram. 
The  “ h ”  and the  “ t ”  in  “ hot, ”   “ hat, ”   “ hit, ”  and  “ heat ”  are unvoiced, the vocal chords 
are still. So what generates the sounds of these unvoiced consonants? Most commonly, 
unvoiced consonants are generated when air is squeezed through a narrow opening 
in the airways, producing a highly turbulent fl ow, which sets up random and therefore 
noisy vibration patterns in the air. 

 In speaking the consonant  “ h, ”  the air  “ rubs ”  as it squeezes through a narrow 
opening in the throat. Students of phonetics, the science of speech sounds, would 
therefore describe this sound as a glottal (i.e., throat produced) fricative (i.e., rubbing 
sound), in this manner describing the place and the mode of articulation. The  “ t ”  is 
produced by the tongue, but unlike in pronouncing the  “ h, ”  the airway is at fi rst 
blocked and then the air is released suddenly, producing a sharp sound onset charac-
teristic of a  “ plosive ”  stop consonant. Plosives can be, for example,  “ labial, ”  that is, 
produced by the lips as in  “ p ”  or  “ b ” ; or they can be  “ laminal-dental, ”  that is, produced 
when the tip of the tongue, the lamina, obstructs and then releases the airfl ow at the 
level of the teeth, as in  “ t ”  or  “ d ” ; or they can be velar, that is, produced at the back 
of the mouth when the back of the tongue pushes against the soft palate, or velum, 
as in  “ k. ”  

 The mouth and throat area contains numerous highly mobile parts that can be 
reconfi gured in countless different ways, so the number of possible speech sounds is 
rather large. (See the  “ vocalization and speech ”  section of the book ’ s Web site for links 
to x-ray videos showing the human articulators in action.) Cataloguing all the differ-
ent speech sounds is a science in itself, known as articulatory phonetics. We shall not 
dwell on this any further here, except perhaps to point out a little detail in   fi gure 1.16,  
which you may have already noticed. The  “ h ”  fricative at the beginning of each word 
is, as we have just described, the result of turbulent airfl ow, hence noisy, hence broad-
band; that is, it should contain a very wide range of frequencies. But the frequencies 
of this consonant are subjected to resonances in the vocal tract just as much as the 
harmonics in the vowel. And, indeed, if you look carefully at the place occupied by 
the  “ h ”  sounds in the spectrograms of   fi gure 1.16  (the region just preceding the vowel), 
you can see that the  “ h ”  sound clearly exhibits formants, but these aren ’ t so much 
the formants of the consonant  “ h ”  as the formants of the vowel that is about to follow! 
When we pronounce  “ hot ”  or  “ hat, ”  our vocal tract already assumes the confi guration 
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of the upcoming vowel during the  “ h, ”  imparting the formants of the following vowel 
onto the preceding consonant. Consequently, there is, strictly speaking, really no such 
thing as the sound of the consonant  “ h, ”  because the  “ h ”  followed by an  “ o ”  has 
really quite a different spectrum from that of an  “ h ”  that is followed by an  “ a. ”  

  This sort of infl uence of the following speech sound onto the preceding sound is 
sometimes referred to as  “ coarticulation ”  or  “ assimilation ”  in the phonetic sciences, 
and it is much more common than you might think. In your personal experience, an 
 “ h ”  is an  “ h ” ; you know how to make it, you know what it sounds like. Recognizing 
an  “ h ”  is trivially easy for your auditory system, despite the fact that, in reality, there 
are many different  “ h ”  sounds. This just serves to remind us that there is a lot more 
to hearing than merely accurately estimating frequency content, and for people trying 
to build artifi cial speech recognizers, such phenomena as coarticulation can be a bit 
of a headache. 

 1.7   Sound Propagation 

 So far, we have looked almost exclusively at vibration patterns in a variety of sound 
sources. Developing some insights into how sounds come about in the fi rst place is 
an essential, and often neglected, aspect of the auditory sciences. But, of course, this 
is only the beginning. We can hear the sound sources in our environment only if their 
vibrations are somehow physically coupled to the vibration-sensitive parts of our ears. 
Most commonly, this coupling occurs through the air. 

 Air is capable of transmitting sound because it has two essential properties: inert 
mass and stiffness or elasticity. You may not think of air as either particularly massive 
or particularly elastic, but you probably do know that air does weigh something (about 
1.2 g/L at standard atmospheric pressure), and its elasticity you can easily verify if you 
block off the end of a bicycle pump and then push down the piston. As the air becomes 
compressed, it will start to push back against the piston, just as if it were a spring. We 
can imagine the air that surrounds us as being made up of small  “ air masses, ”  each 
linked to its neighboring masses through spring forces that are related to air pressure. 
This is a useful way of conceptualizing air, because it can help us develop a clear image 
of how sound waves propagate. A medium made of small masses linked by springs 
will allow disturbances (e.g., small displacements at one of the edges) to travel through 
the medium from one mass to the next in a longitudinal wave pattern. How this works 
is illustrated in   fi gure 1.17 , as well as in a little computer animation which you can 
fi nd on the book ’ s Web site. 

      Figure 1.17  shows the output of a computer simulation of a sound source, repre-
sented by the black rectangle to the left, which is in contact with an air column, 
represented by a row of air masses (gray circles) linked by springs (zigzag lines). At 
fi rst (top row), the source and the air masses are at rest, but then the sound source 
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 Figure 1.17 
 A longitudinal wave propagating through a medium of inert masses coupled via elastic springs. 

See the book ’ s Web site for an animated version. 

briefl y lurches a bit to the right, and then returns to its initial position. The rightward 
movement compresses the spring that links it to the neighboring air mass. That, in 
turn, causes this air mass to be accelerated rightwards, but because the mass has a 
small inertia, its movement lags somewhat behind that of the sound source. As the 
mass immediately to the right of the sound source starts moving rightward, it com-
presses the spring linking it to the next mass along, which in turn accelerates that 
mass rightward, and so on and so on. As the sound source returns to its original posi-
tion, it will start to stretch the spring linking it to the neighboring mass, which in 
time will pull that mass back to its original position. This stretch also propagates along 
the air column; thus, while each air mass is fi rst pushed one way it is then pulled the 
other, so that it ends up where it started. There are thus essentially four phases to the 
propagating sound wave: fi rst, a compression, followed by a forward displacement, 
followed by a rarefaction (or stretch, in our spring analogy), followed by a backward 
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(return) displacement. Sound waves therefore consist of displacement waves as well 
as pressure waves, but the displacement wave lags behind the pressure wave by a 
quarter of a cycle, and the fi nal net displacement of the air is zero. (Sound is not 
a wind). 

 To generate   fi gure 1.17 , we got a computer to apply Hooke ’ s law to work out all 
the spring forces, and then to use Newton ’ s second law to calculate the acceleration 
of each inert air mass in turn and update the positions of the masses accordingly at 
each time step.   Figure 1.17  illustrates quite nicely how the simple interaction of 
Hooke ’ s law and Newton ’ s second law allows for a movement of a sound source to be 
translated into a  “ disturbance ”  in the local air pressure (the spring forces), which then 
propagates through a column of air away from the source. It is essentially that mecha-
nism which links the surfaces of all the sound sources in your environment to your 
eardrum. And in doing so, it replicates the vibration patterns of the sound sources 
quite accurately. The forward movement of the source gave rise to a compression of 
corresponding size, while the return to the original position created a corresponding 
rarefaction. This simple correspondence is handy, because it means that we can, to a 
pretty good fi rst approximation, assume that everything we have learned in previous 
sections about the vibration patterns of different types of sound sources will be faith-
fully transmitted to the eardrum. 

 Of course, this phenomenon of longitudinal propagation of waves is not limited 
to air. Any material that possesses inert mass and at least some springlike elasticity is, 
in principle, capable of propagating sound waves. Consequently, dolphins can use 
their lower jaws to pick up sound waves propagated through water, while certain 
species of toads, or even blind mole rats, appear to be able to collect sound waves 
conducted through the ground. But different substrates for sound propagation may 
be more or less stiff, or more or less heavy, than air, and these differences will affect 
the speed at which sound waves travel through that substrate. We mentioned earlier 
that the displacement of the fi rst air mass in   fi gure 1.17  lags somewhat behind the 
displacement of the sound source itself. The movement of the sound source fi rst has 
to compress the spring, and the spring force then has to overcome the inertia of the 
fi rst mass. Clearly, if the spring forces are quite large and the masses only small, then 
the time lag will not be very great. 

 Materials with such comparatively large internal spring forces are said to have a 
high acoustic impedance. The acoustic impedance is defi ned as the amount of pressure 
(i.e., spring force) required to achieve a given particle velocity. The speed of sound is 
high in materials that have a high acoustic impedance but a low density (essentially 
high spring forces and low masses). For air at ambient pressures and temperature, the 
speed of sound works out to about 343 m/s (equivalent to 1,235 km/h or 767 mph). 
The precise value depends on factors such as humidity, atmospheric pressure, 
and temperature, because these may affect the mass density and the elastic modulus 
(i.e., the springiness) of the air. For water, which is heavier but also much, much 
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stiffer than air, the speed of sound is more than four times larger, at about 1,480 m/s 
(5,329 km/h or 3,320 mph). 

 In a number of ways, the longitudinal wave propagation shown in   fi gure 1.17  is, 
of course, a somewhat oversimplifi ed model of real sound waves. For example, in our 
idealized model, sound waves propagate without any loss of energy over infi nite dis-
tances. But you know from experience that sounds are quieter if the sound source is 
further away. Two factors contribute to this. The fi rst, and often the less important 
reason, is that in real physical media, sound waves tend to dissipate, which simply 
means that the coordinated motion of air masses will start to become disorganized 
and messy, gradually looking less and less like a coherent sound wave and increasingly 
like random motion; that is, the sound will slowly turn into heat. Interestingly, high-
frequency sounds tend to dissipate more easily than low-frequency ones, so that 
thunder heard from a great distance will sound like a low rumble, even though the 
same sound closer to the source would have been more of a sharp  “ crack, ”  with plenty 
of high-frequency energy. Similarly, ultrasonic communication and echolocation 
sounds such as those used by mice or bats tend to have quite limited ranges. A mouse 
would fi nd it diffi cult to call out to a mate some twenty yards away, something that 
most humans can do with ease. 

 The second, and usually major factor contributing to the attenuation (weakening) 
of sounds with distance stems from the fact that most sound sources are not linked 
to just a single column of spring-linked masses, as in the example in   fi gure 1.17 , but 
are instead surrounded by air. We really should think more in terms of a three-
dimensional lattice of masses with spring forces acting up and down, forward and 
backward, as well as left and right. And as we mentioned earlier, the springs in our 
model represent air pressure gradients, and you may recall that pressure will push from 
the point where the pressure is greater  in all directions  where pressure is lower. Con-
sequently, in a three-dimensional substrate, a sound wave that starts at some point 
source will propagate outward in a circular fashion in all directions. You want to 
imagine a wavefront a bit like that in   fi gure 1.17 , but forming a spherical shell that 
moves outward from the source. 

 Now, this spherical shell of the propagating sound wave does, of course, get larger 
and larger as the sound propagates, just like the skin of a balloon gets larger as we 
continue to infl ate it. However, all the mechanical energy present in the sound wave 
was imparted on it at the beginning, when the sound source accelerated the air masses 
in its immediate neighborhood. As the sound wave propagates outward in a sphere, 
that initial amount of mechanical energy gets stretched out over a larger and larger 
area, much like the skin of a balloon becomes thinner as we infl ate it. If the area 
becomes larger as we move further away from the sound source but the energy is 
constant, then the amount of energy per unit area must decrease. And since the surface 
area of a sphere is proportional to the square of its radius (surface = 4  ·   π    ·  r   2 ), the 
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sound energy per unit surface area declines at a rate that is inversely proportional to 
the square of the distance from the source. This fact is often referred to as the  inverse 
square law , and it is responsible for the fact that sound sources normally are less loud 
as we move further away from them. 

 Of course, the inverse square law, strictly speaking, only holds in the  “ free fi eld, ”  
that is, in places where the sound wave really can propagate out in a sphere in all 
directions. If you send sound waves down a narrow tube with rigid walls, then you 
end up with a situation much more like that in   fi gure 1.17 , where you are dealing 
with just a column of air in which the sound amplitude should stay constant and not 
decline with distance. You may think that this is a severe limitation, because in the 
real world there are almost always some surfaces that may be an obstacle to sound 
propagation, for example, the fl oor! However, if you placed a sound source on a rigid 
fl oor, then the sound waves would propagate in hemispheres outwards (i.e., sideways 
and upward), and the surface area of a hemisphere is still proportional to the square 
of its radius (the surface is simply half of 4 π  r   2 , hence still proportional to  r   2 ), so the 
inverse square law would still apply. 

 If, however, we lived in a world with four spatial dimensions, then sound energy 
would drop off as a function of 1/ r   3  — which would be known as the inverse cube 
law — and because sound waves would have more directions in which they must spread 
out, their amplitudes would decrease much faster with distance, so communicating 
with sound over appreciable distances would require very powerful sound sources. Of 
course, we cannot go into a world of four spatial dimensions to do the experiment, 
but we can send sound down  “ effectively one-dimensional ”  (i.e., long but thin) tubes. 
If we do this, then the sound amplitude should decrease as a function of 1/ r   0   =  1, that 
is, not at all, and indeed people in the 1800s were able to use long tubes with funnels 
on either end to transmit voices, for example, from the command bridge to the lower 
decks of a large ship. 

 Thus, the inverse square law does not apply for sounds traveling in confi ned spaces, 
and substantial deviations from the inverse square law are to be expected also in many 
modern indoor environments. Although three-dimensional, such environments 
nevertheless contain many sound-refl ecting surfaces, including walls and ceilings, 
which will cause the sound waves to bounce back and forth, creating a complex 
pattern of overlapping echoes known as reverberations. In such reverberant environ-
ments, the sound that travels directly from the source to the receiver will obey the 
inverse square law, but refl ected sound waves will soon add to this original sound. 

 1.8   Sound Intensity 

 From our previous discussion of propagating sound waves, you probably appreciate 
the dual nature of sound: A small displacement of air causes a local change in pressure, 
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which in turn causes a displacement, and so on. But if we wanted to measure 
how large a sound is, should we concern ourselves with the amplitude of the 
displacement, or its velocity, or the amplitude of the pressure change, or all three? 
Well, the displacement and the pressure are linked by linear laws of motion, so if we 
know one, we ought to be able to work out the other. The microphones used to 
measure sounds typically translate pressure into voltage, making it possible to read 
the change of pressure over time directly off an oscilloscope screen. Consequently, 
acoustical measures of sound amplitude usually concern themselves with the sound 
pressure only. And you might think that, accordingly, the appropriate thing to do 
would be to report sound amplitudes simply in units of pressure, that is, force per 
unit area. While this is essentially correct, matters are, unfortunately, a little more 
complicated. 

 The fi rst complication we have to deal with is that it is in the very nature of sounds 
that the sound pressure always changes, which is very inconvenient if we want to 
come up with a single number to describe the intensity of a sound. We could, of 
course, simply use the largest (peak) pressure in our sound wave and report that. Peak 
measurements are sometimes used, and are perfectly fi ne if the sound we are trying 
to characterize is a pure sinusoid, for example, because we can infer all the other 
amplitudes if we know the peak amplitude. But for other types of sound, peak ampli-
tude measures can be quite inappropriate. Consider, for example, two click trains, each 
made up of identical brief clicks; but in the fi rst click train the interval between clicks 
is long, and in the second it is much shorter. Because the clicks are the same in each 
train, the peak amplitudes for the two trains are identical, but the click train with the 
longer inter-click intervals contains longer silent periods, and it would not be unrea-
sonable to think it therefore has, in a manner of speaking, less sound in it than the 
more rapid click train. 

 As this example illustrates, it is often more appropriate to use measures that 
somehow average the sound pressure over time. But because sounds are normally 
made up of alternating compressions and rarefactions (positive and negative pres-
sures), our averaging operation must avoid canceling positive against negative pressure 
values. The way this is most commonly done is to calculate the root-mean-square 
(RMS) pressure of the sound wave. 

 As the name implies, RMS values are calculated by fi rst squaring the pressure at 
each moment in time, then averaging the squared values, and fi nally taking the square 
root. Because the square of a negative value is positive, rarefactions of the air are not 
canceled against compressions when RMS values are calculated. For sine waves, the 
RMS value should work out as 1/ √ 2 (70.71%) of the peak value, but that is true only 
if the averaging for the RMS value is done over a time period that contains a whole 
number of half-cycles of the sine wave. In general, the values obtained with any aver-
aging procedure will be, to some extent, sensitive to the choice of time window over 



Why Things Sound the Way They Do 45

which the averaging is done, and the choice of the most appropriate time window 
will depend on the particular situation and may not always be obvious. 

 Another factor that can cause great confusion among newcomers to the study of 
sound (and sometimes even among experts) is that even RMS sound pressure values 
are almost never reported in units of pressure, like pascals (newtons per square meter) 
or in bars, but are instead normally reported in bels, or more commonly in tenths of 
bels, known as decibels (dB). Bels are in many ways a very different beast from the 
units of measurement that we are most familiar with, like the meter, or the kilogram, 
or the second. For starters, unlike these other units, a bel is a  logarithmic  unit. What 
is that supposed to mean? 

 Well, if we give, for example, the length of a corridor as 7.5 m, then we effectively 
say that it is 7.5  times  as long as a well-defi ned standard reference length known as a 
meter. If, however, we report an RMS sound pressure as 4 bels (or 40 dB), we ’ re saying 
that it is 4  orders of magnitude  (i.e., 4 powers of 10 = 10 4  = 10,000 times) larger than 
some standard reference pressure. Many newcomers to acoustics will fi nd this orders 
of magnitude thinking unfamiliar and at times a little inconvenient. For example, if 
we add a 20-kg weight to a 40-kg weight, we get a total weight of 60 kg. But if we add, 
in phase, a 1-kHz pure tone with an RMS sound pressure amplitude of 20 dB to another 
1-kHz pure tone with an amplitude of 40 dB, then we do not end up with a tone with 
a 60-dB amplitude. Instead, the resulting sound pressure would be log 10 (10 4  + 10 2 ) = 
4.00432 bels, that is, 40.0432 dB. The weaker of the two sounds, having an amplitude 
2 orders of magnitude (i.e., 100 times) smaller than the larger one, has added, in terms 
of orders of magnitude, almost nothing to the larger sound. 

 Because decibels, unlike weights or lengths or money, work on a logarithmic scale, 
adding decibels is a lot more like multiplying sound amplitudes than adding to them, 
and that takes some getting used to. But the logarithmic nature of decibels is not their 
only source of potential confusion. Another stems from the fact that decibels are used 
to express all sorts of logarithmic ratios, not just ratios of RMS sound pressure ampli-
tudes. Unlike meters, which can only be used to measure lengths, and always compare 
these lengths to a uniquely and unambiguously defi ned standard length, for decibels 
there is no uniquely defi ned type of measurement, nor is there a unique, universally 
accepted standard reference value. Decibel values simply make an order of magnitude 
comparison between any two quantities, and it is important to be clear about what is 
being compared to what. 

 Decibel values need not relate to sound at all. To say that the sun is about 25.8 dB 
(i.e., 10 2.58 , or roughly 380 times) further away from the earth than the moon is would 
perhaps be a little unusual, but entirely correct. But surely, at least in the context of 
sound, can ’ t we safely assume that any decibels we encounter will refer to sound pres-
sure? Well, no. Sometimes they will refer to the RMS pressure, sometimes to peak 
pressure, but more commonly, acoustical measurements in decibels will refer to the 
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 intensity  or the  level  of a sound. In a context of acoustics, the words  “ level ”  and  “ inten-
sity ”  can be used interchangeably, and an intensity or level stated in decibels is used, 
in effect, to compare the  power  (i.e., the energy per unit time) per unit area delivered 
by each of the two sound waves. 

 Fortunately, there is a rather simple relationship between the energy of a sound 
and its RMS sound pressure amplitude, so everything we learned so far about pressure 
amplitudes will still be useful. You may remember from high school physics that the 
kinetic energy of a moving heavy object is given by  E = mv   2 , that is, the kinetic energy 
is proportional to the square of the velocity. This also holds for the kinetic energy of 
our notional lumps of air, which we had encountered in   fi gure 1.17  and which take 
part in a longitudinal wave motion to propagate sound. Now, the average velocity of 
these lumps of air is proportional to the RMS sound amplitude, so the energy levels 
of the sound are proportional to the  square  of the amplitude. Consequently, if we 
wanted to work out the intensity  y  of a particular sound with RMS pressure  x  in 
decibels relative to that of another known reference sound whose RMS pressure is  x ref  , 
then we would do this using the formula 

  y (dB) =  10     ·     log 10 ( x  2  /x ref   2 )  =  20     ·     log 10 ( x/x ref  ) 

 (The factor of 10 arises because there are 10 dB in a bel. And because log( a  2 ) = 
2   ·   log( a ), we can bring the squares in the fraction forward and turn the factor 10 into 
a factor 20). 

 You might be forgiven for wondering whether this is not all a bit overcomplicated. 
If we can use a microphone to measure sound pressure directly, then why should we 
go to the trouble of fi rst expressing the observed pressure amplitudes as multiples of 
some reference, then calculating the log to base 10 of that fraction, then fi nally mul-
tiply by 20 to work out a decibel sound intensity value. Would it not be much easier 
and potentially less confusing to simply state the observed sound pressures amplitudes 
directly in pascals? After all, our familiar, linear units like the meter and the newton 
and the gram, for which 4 + 2 = 6, and not 4.00432, have much to commend them-
selves. So why have the seemingly more awkward and confusing logarithmic measures 
in bels and decibels ever caught on? 

 Well, it turns out that, for the purposes of studying auditory perception, the orders 
of magnitude thinking that comes with logarithmic units is actually rather appropriate 
for a number of reasons. For starters, the range of sound pressure levels that our ears 
can respond to is quite simply enormous. Hundreds of millions of years of evolution 
during which you get eaten if you can ’ t hear the hungry predators trying to creep up 
on you have equipped us with ears that are simply staggeringly sensitive. The faintest 
sound wave that a normal, young healthy human can just about hear has an RMS 
sound pressure of roughly 20 micropascal ( μ Pa), that is, 20 millionth of a newton 
per square meter. That is approximately 10 million times less than the pressure of a 
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penny resting on your fi ngertip! Because an amplitude of 20  μ Pa is close to the absolute 
threshold of human hearing, it is commonly used as a reference for sound intensity 
calculations. Sound levels expressed in decibels relative to 20  μ Pa are usually abbrevi-
ated as  dB SPL , short for sound pressure level. 

 The sound level of the quietest audible sounds would therefore be around 0 dB SPL. 
(These almost inaudibly quiet sounds have an amplitude approximately equal to that 
of the reference of 20  μ Pa, so the fraction  x/x ref   in the formula above would work out 
to about 1, and the log of 1 is 0.) But if you listen, for example, to very loud rock 
music, then you might expose your ears to sound levels as high as 120 dB SPL. In other 
words, the sound energy levels in these very loud sounds are twelve orders of magni-
tude — 1,000,000,000,000-fold (1,000  billion  times!) larger than those in the quietest 
audible sounds. Thousand billion-fold increases are well beyond the common experi-
ence of most of us, and are therefore not easy to imagine. 

 Let us try to put this in perspective. A large rice grain may weigh in the order of 
0.04 g. If you were to increase that tiny weight a thousand billion-fold, you would end 
up with a mountain of rice weighing 50,000 tons. That is roughly the weight of ten 
thousand fully grown African elephants, or one enormous, city-block-sized ocean 
cruise liner like the  Titanic . Listening to very loud music is therefore quite a lot like 
taking a delicate set of scales designed to weigh individual rice grains, and piling one 
hundred fully loaded jumbo jet airliners onto it. It may sound like fun, but it is not 
a good idea, as exposure to very loud music, or other very intense sounds for that 
matter, can easily lead to serious and permanent damage to the supremely delicate 
mechanics in our inner ears. Just a single, brief exposure to 120 dB SPL sounds may 
be enough to cause irreparable damage. 

 Of course, when we liken the acoustic energy at a rock concert to the mass of one 
hundred jumbo jets, we don ’ t want to give the impression that the amounts of energy 
entering your eardrums are large. Power amplifi ers for rock concerts or public address 
systems do radiate a lot of power, but only a minuscule fraction of that energy enters 
the ears of the audience. Even painfully loud sound levels of 120 dB SPL carry really 
only quite modest amounts of acoustic power, about one-tenth of a milliwatt (mW) 
per square centimeter. A human eardrum happens to be roughly half a square centi-
meter in cross section, so deafeningly loud sounds will impart 0.05 mW to it. How 
much is 0.05 mW? Imagine a small garden snail, weighing about 3 g, climbing verti-
cally up a fl ower stalk. If that snail can put 0.05 mW of power into its ascent, then it 
will be able to climb at the, even for a snail, fairly moderate pace of roughly 1.5 mm 
every second.  “ Snail-power, ”  when delivered as sound directly to our eardrums, is 
therefore amply suffi cient to produce sounds that we would perceive as deafeningly, 
painfully loud. If the snail in our example could only propel itself with the power 
equivalent to that delivered to your eardrum by the very weakest audible sounds, 
a power 12 orders of magnitude smaller, then it would take the snail over two 
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thousand years to climb just a single millimeter! To be able to respond to such unimag-
inably small quantities of kinetic energy, our ears indeed have to be almost unbeliev-
ably sensitive. 

 When we are dealing with such potentially very large differences in acoustic energy 
levels, working with orders of magnitude, in a logarithmic decibel scale, rather than 
with linear units of sound pressure or intensity, keeps the numbers manageably small. 
But working with decibels brings further, perhaps more important advantages, as it 
also more directly refl ects the way we subjectively perceive sound intensities or loud-
ness. Our ability to detect changes in the amplitude of a sound is governed by Weber ’ s 
law — at least to a good approximation.  4   Weber ’ s law states that we can detect changes 
in a particular quantity, like the intensity of a sound, or the weight of a bag or the 
length of a pencil, only if that quantity changed by more than a given, fi xed percent-
age, the so-called Weber fraction. For broadband noises of an intensity greater than 
30 dB SPL, the Weber fraction is about 10%, that is, the intensity has to increase by 
at least 10% for us to be able to notice the difference (Miller, 1947). 

 If the increase required to be able to perceive the change is a fi xed proportion of 
the value we already have, then we might expect that the perceived magnitude might 
be linked to physical size in an exponential manner. This exponential relationship 
between physical intensity of a sound and perceived loudness has indeed been con-
fi rmed experimentally, and is known as Stevens ’ s law (Stevens, 1972). Perceived loud-
ness is, of course, a subjective measure, and varies to some extent from one individual 
to another, and for reasons that will become clearer when we consider mechanisms 
of sound capture and transduction by the ear in the next chapter, the relationship 
between perceived loudness and the physical intensity of a sound will also depend on 
its frequency content. Nevertheless, for typical listeners exposed to typical sounds, a 
growth in sound intensity by 10 dB corresponds approximately to a doubling in per-
ceived loudness. Describing sound intensity in terms of decibels, thus, appears to relate 
better or more directly to how we subjectively perceive a sound than describing it in 
terms of sound pressure amplitude. But it is important to note that the link between 
the physical intensity of a sound and its perceptual qualities, like its perceived loud-
ness, is not always straightforward, and there are a number of complicating factors. 
To deal with at least a few of them, and to arrive at decibel measures that are more 
directly related to human auditory performance, several other decibel measures were 
introduced in addition to dB SPL, which we have already encountered. Some of these, 
which are quite widely used in the literature, are dBA and dB HL, where HL stands for 
hearing level. 

 Let us fi rst look at dBA. As you are probably well aware, the human ear is more 
sensitive to some frequencies than others. Some sounds, commonly referred to as 
ultrasounds, with a frequency content well above 20 kHz, we cannot hear at all, 
although other species of animals, for example, dogs, bats, or dolphins, may be able 
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to hear them quite well. Similarly, certain very low (infrasound) frequencies, below 
20 Hz, are also imperceptible to us. We tend to be most sensitive to sounds with fre-
quencies between roughly 1 and 4 kHz. For frequencies much below 1 kHz or well 
above 4 kHz, our sensitivity declines, and when we reach frequencies either below 
20 Hz or above 20 kHz, our sensitivity effectively shrinks to nothing. The function that 
maps out our sensitivity is known as an audiogram, which is effectively a U-shaped 
curve with maximal sensitivity (lowest detection thresholds) at frequencies between 
1 and 4 kHz. The reason that our ears are more sensitive to some frequencies than 
others seems to stem from mechanical limitations of the outer and middle ear struc-
tures whose job it is to transmit sounds from the outside world to the inner ear. We 
will look at this in more detail in the next chapter. 

 One consequence of this U-shaped sensitivity curve is that it introduces a massive 
frequency dependence in the relationship between the acoustic intensity of a sound 
and its perceived loudness. A 120-dB SPL pure tone of 1 kHz would be painfully loud, 
and pose a serious threat of permanent damage to your hearing, while a 120-dB SPL 
pure tone of 30 kHz would be completely inaudible to you, and would also be much 
safer. When we try to use physical measures of the intensity of ambient sounds to 
decide how likely a sound is to cause a nuisance or even a health hazard, we need to 
take this frequency dependence into account. Noise measurements are therefore 
usually performed with an  “ A-weighting-fi lter, ”  a band-pass fi lter with a transfer func-
tion that approximates the shape of the human audiogram and suppresses high and 
low frequencies at a rate proportional to the decline in human sensitivity for those 
frequencies. Determining sound intensity in dBA is therefore equivalent to determin-
ing dB SPL, except that the sound is fi rst passed through an A-fi lter. 

 The link between physical energy, perceived loudness, and potential to cause noise 
damage is not straightforward. The use of A-weighting fi lters is only one of many 
possible approaches to this problem, and not necessarily the best. Other fi lter func-
tions have been proposed, which go, perhaps unsurprisingly, by names such as B, C, 
and D, but also, less predictably, by names like ITU-R 468. Each of these possible 
weighting functions has its own rationale, and may be more appropriate for some 
purposes than for others; those who need to measure noise professionally may wish 
to consult the recent Industrial Standards Organization document ISO 226:2003 for 
further details. Although A-weighting may not always be the most appropriate method, 
it remains very commonly used, probably because it has been around for the longest 
time, and almost all commercially available noise level meters will have A-weighting 
fi lters built in. 

 Like dBA, dB HL also tries to take typical human frequency sensitivity into account, 
but unlike dBA, it is a clinical, not a physical measure: dB HL measurements are not 
used to describe sounds, but to describe people. When it is suspected that a patient 
may have a hearing problem, he or she is commonly sent to have a clinical audiogram 
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test performed. During this test, the patient is seated in a soundproof booth and asked 
to detect weak pure tones of varying frequencies delivered over headphones. 

 The measured perceptual thresholds are then expressed as sensitivity relative to the 
threshold expected in normal, young healthy humans. Thus, a patient with normal 
hearing will have a sensitivity of 0 dB HL. A result of 10 dB HL at a particular frequency 
means that the patient requires a sound 10 dB more intense than the average young, 
healthy listener to detect the sound reliably. The patient ’ s detection threshold is 
elevated by 10 dB relative to what is  “ normal. ”  In contrast, patients with exceptionally 
acute hearing may achieve negative dB HL values. A value of +10 dB HL, though 
slightly elevated, would still be considered within the normal range. In fact, only 
threshold increases greater than 20 dB would be classifi ed as hearing loss. Since the 
normal sound sensitivity range covers 12 orders of magnitude, and because sounds 
with intensities of 20 dBA or less are terribly quiet, losing sensitivity to the bottom 
20 dB seems to make little difference to most people ’ s ability to function in the modern 
world. 

 Generally, values between 20 and 40 dB HL are considered diagnostic of mild 
hearing loss, while 40 to 60 dB HL would indicate moderate, 60 to 90 dB HL severe, 
and more than 90 dB HL profound hearing loss. Note that hearing levels are usually 
measured at a number of pure tone frequencies, common clinical practice is to proceed 
in  “ octave steps ”  (i.e., successive frequency doublings) from 125 or 250 Hz to about 
8 kHz, and patients may show quite different sensitivities at different frequencies.  

 Conductive hearing loss, that is, a loss of sensitivity due to a mechanical blockage 
in the outer or middle ear, tends to present as a mild to moderate loss across the whole 
frequency range. In contrast, sensorineural hearing loss is most commonly caused by 
damage to the delicate sensory hair cells in the inner ear, which we discuss in the 
next chapter, and it is not uncommon for such sensorineural losses to affect the sen-
sitivity to high frequencies much more than to low frequencies. Thus, elderly patients 
often have mild to moderate losses at 8 kHz but normal sensitivity at frequencies below 
a few kilohertz, and patients who have suffered noise damage frequently present with 
focal losses of sensitivity to frequencies around 4 kHz. Why some frequency ranges are 
more easily damaged than others may become clearer when we study the workings of 
the inner ear, which is the subject of the next chapter. 
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